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Peter Blau was one of the first to define a latent social space and utilize it to provide concrete hypothe-
ses. In his latent space, Blau defines social structure via social “parameters” (constraints). Actors that are
closer together (more homogenous) in this social parameter space are more likely to interact. One of Blau’s
most important hypotheses resulting from this work was that the consolidation of parameters could lead to
isolated social groups (e.g. the consolidation of race and income might lead to segregation). In the present
work, we use foursquare data from New York city to explore evidence of homogeneity along certain social pa-
rameters and consolidation that breeds social isolation in communities of locations checked-in to by similar
users.

More specifically, we first test the extent to which communities of locations detected via Latent Dirichlet
Allocation are homogenous across a set of four social constraints - racial homophily, income homophily, per-
sonal interest homophily and physical space. We find that fourteen (of twenty) communities are statistically,
and all but one qualitatively, homogenous along one of these social constraints, showing the relevance of
Blau’s latent space model in venue communities determined via user check-in behavior. We then consider
the extent to which communities with consolidated parameters, those homogenous on more than one param-
eter, represent socially isolated populations. We find that communities homogenous on multiple parameters,
including a homosexual community and a “hipster” community, show support for Blau’s hypothesis that con-
solidation breeds social isolation. We consider these results in the context of mediated communication, in
particular in the context of self representation on social media.
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1. INTRODUCTION
With the advent of GPS units on mobile phones and the increasing popularity of
location-sharing services such as foursquare1 and Facebook Places2, scientists have
in recent years been privy to massive quantities of information on the movements, ac-
tions and social structure of large human systems. These data are substantially more
granular, more accurate and larger in scale than location data collected in the past via
more traditional means, such as surveys.

Though the literature around these data has focused on a variety of problems, two
general concepts are pervasive throughout. The first is that human interaction and
travel are bound by space [Brockmann et al. 2006; Cheng et al. 2011]. The second is
that homophily, the principle that “a contact between similar people occurs at a higher
rate than among dissimilar people” [McPherson et al. 2001, p.416], is a strong driver of
both where humans go and who they interact with. Homophily has been used to frame
several recent models of community and mobility. These models have been increasingly
successful in, for example, predicting where a given person will go next [Kurashima
et al. 2013; Sadilek et al. 2012; Cho et al. 2011] by placing human movement in the
context of the actions of others having similar interests [Noulas et al. 2012b] or user’s
social connections [Sadilek et al. 2012].

While increasingly successful, this recent work has also suggested that the con-
straints of space and homophily on sociality are messy and multi-faceted. [Sadilek
et al. 2012] find spatial constraints alone are insufficient to predict a person’s location
and [Cho et al. 2011] observe that social structure can explain only a small percentage
of user behavior on a service similar to foursquare. What these studies have found,
but failed to state in the context of sociological theory, is that homophily is a “cross-
cutting phenomena” [McPherson et al. 2001, p.418]. By cross-cutting, we refer to the
fact that human interaction and movements are driven heavily by homophily, but that
this homophily exists in a high-dimensional, unobservable social space.

This social space has often been referred to as “Blau space” [McPherson and Ranger-
Moore 1991] after Peter Blau, one of the first to formulate such a notion [Blau 1974;
1977a; 1977b]. In contrast to homophily as a driving factor in sociality, Blau framed
homophily as one family of factors within a larger set of constraints on social behavior,
constraints acting as the parameters of this latent space. Social groups tend to form,
Blau argued, in collections of individuals that are homogenous on one or more of these
social constraints and thus groups that occupy a similar position in the latent space.
This formalization is convenient, as it allows us to set homophily and other mecha-
nisms influencing social behavior (like spatial position) into a consistent conceptual
framework.

In previous work [Joseph et al. 2012], we utilized Latent Dirichlet Allocation (LDA)
[Blei et al. 2003] to cluster locations (venues) in foursquare data from New York City
and the Bay Area3. We viewed the resulting clusters of venues as representations of
social communities and provided a qualitative explanation of the results. Here, we
concern ourselves only with data from New York City. New York is of particular inter-
est due to the magnitude of the data we have for the city, its ethnic diversity and its
high population density, all of which promote the possibility of interesting sociological
phenomenon.

Our chief observations in this previous work were two-fold. First, we found that the
communities we discovered appeared homogenous in at least one observable manner.

1http://www.foursquare.com
2https://www.facebook.com/about/location
3foursquare is a location-based social network where users can “check-in” to different locations and broad-
cast these check-ins to their friends on social networking sites
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These communities could thus, we believed, be rationalized within Blau’s notion of a
high-dimensional social space. Second, and more interestingly, we observed that cer-
tain communities appeared to be homogenous along multiple social dimensions (e.g.
space and function). This finding also falls into Blau’s work. Blau used his conceptu-
alization of latent social space to argue that ‘consolidated [social constraints] impede
intergroup relations” [Blau 1977b, p.45]. In other words, Blau argued that in addition
to aiding in the creation of social relations, homophily, when correlated along multi-
ple social constraints within communities, can also serve to limit social interactions
across groups. From this, we can infer that a community homogenous along multiple
constraints may exist in a narrow domain of the latent social space and, consequently,
exist as an isolated social group.

In the present work, we extend previous efforts in two ways4. We first consider more
rigorously the quality of the communities that LDA provides for sociological study un-
der different parameterizations. While many human social structures are dynamic,
the macrosociological processes of interest to Blau were presumed to be relatively sta-
ble. We thus desire a model that provides a stable estimate of community over time.
In order to find a parameterization of LDA that provides this, we first split the data
into two equally-sized partitions. Across a wide parameter space, we run LDA on both
datasets and calculate the Normalized Mutual Information (NMI) [Lancichinetti et al.
2009] of the resulting clusterings. We find that there exists certain parameterizations
of LDA in which a level of stable community structure arises.

Using the best model parameterization, we then run LDA on the full data and pro-
vide a more quantitatively rigorous analysis of the resulting communities. Our focus
is on expanding our two observations in the previous work within Blau’s framework.
The latent space we consider centers on four well-validated social constraints- racial
homophily, income-based homophily, geographic constraints and personal interest ho-
mophily. These social constraints are not used during venue clustering and therefore
can then be viewed as latent factors influencing the creation of the communities LDA
uncovers. Assuming these constraints are pertinent to the unobserved social space
and that the communities we observe follow Blau’s conceptualization, the following
hypothesis should hold:

H1: The communities discovered will be more homogenous than one would expect by
chance on at least one of the proposed social constraints

Using this same framework, we can also test whether or not Blau’s hypothesis that
consolidation of parameters breeds social isolation extends to our observed communi-
ties. This leads to the following hypothesis:

H2: Communities homogenous on more than one of the proposed social constraints
will represent socially isolated groups

In order to test our two hypotheses, we first develop statistics to measure the level of
homogeneity in each community along each constraint. We then construct a null sam-
pling distribution for each statistic on each community via the bootstrap method [Efron
and Tibshirani 1993]. Our hypotheses can then be tested by determining whether or
not our social constraints were more homogenous in the observed communities than
one would expect given the null distribution.

Our results indicate partial support for both hypotheses. For H1, of the twenty com-
munities discovered all but one qualitatively matches the expected outcome. Quanti-
tatively, six communities are not significantly different than expected by chance, in-
dicating a variety of possible confounds which we explore. Our primary findings are

4Code used for analysis and results of our parameter experiments are available at
https://github.com/kennyjoseph/tist article
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associated with H2, where we find three communities (out of twenty) in which more
than one social constraint is significantly more homogenous than chance.

In two of the three cases, the communities discovered represent populations within
the city that are often marginalized and segregated, while in the third, results are
marginally supportive of the hypothesis. We discuss these results in the context of
Blau’s social space framework, but also discuss a possible confound in the form of self
representation, the fact that users only check-in to places where they want to be seen.
Regardless of this effect, the fact that Blau’s theory finds a reasonable level of support
in a new data source and a relatively new conceptualization of the urban community
suggests that urban computation with an aim at understanding social integration is
an important foci of future work.

In the following sections, we first briefly discuss how communities have been defined
and studied within the city in recent work. We then provide a brief introduction to LDA
and the location-based social networks (LBSNs) literature. Following this, we describe
our methodology, in particular our method of parameter selection for LDA and details
on the algorithms we use to bootstrap our analysis. We then present our results, a
short discussion and end with some remarks on limitations and future work.

2. RELATED WORK
2.1. Blau and Urban Sociology
Blau’s work has been applied to the urban setting chiefly with respect to the topic of
racial segregation [Massey and Denton 1988], where his notion of social groups has
been aligned with the neighborhood as defined by government boundaries. Decades of
research have shown that these neighborhoods represent segments of a city’s popula-
tion that are homogenous beyond spatial positioning- for example, individuals in the
same neighborhood often have similar socio-demographic characteristics and socio-
economic status [Schelling 1971].

Recently, however, the notion of a spatially, culturally homogenous neighborhood
defined by government boundaries has been questioned by scholars. [Hipp et al. 2012]
construct neighborhoods bound by social ties in addition to geographic constraints,
arguing that “the presence of social ties is a characteristic of neighborhoods” (p. 128).
[Cranshaw et al. 2012] show that by clustering a geospatially constrained graph of
venues checked-in to by foursquare users, one finds neighborhoods that rarely conform
to government-induced boundaries. Finally, though not yet a reality, the increasing
level to which we live “in media” [Deuze 2012] suggests an even further breakdown of
the spatial component of a neighborhood may be eminent.

In the present work, we take the first approach we are aware of to assume a purely
social, data-driven view of the community within the urban setting with the intention
of analyzing the relationship between social constraints and social isolation. We as-
sume that the only defining characteristic of a community is that it is a collection of
places within a city frequented by the same people. Our focus is thus on how Blau’s
predictions extend to such communities.

2.2. Latent Dirichlet Allocation
LDA is a member of a larger family of Bayesian frameworks referred to as “topic mod-
els”. It was first introduced by [Blei et al. 2003] as a latent space model that could be
used to better understand text corpora by representing a large collection of documents
in a more compact set of hidden “topics”. In a typical usage of LDA, a text document is
modeled as a set of words, where each word is assumed to belong to one or more topics.
Model output describes each document as a distribution over the topics and each topic
is described as a distribution over all words. We can use the analogies of a document
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to represent a user and a word to represent a venue when modeling user check-in be-
haviors with LDA. In this way, a user who has checked in to Yankee Stadium twice
and the local Pizza shop four times is modeled as the term vector < ...0, 0, 2, 0, 4, 0... >,
where zeros and ellipses show that in LDA, all venues (words) in the data are used to
define each user (document)5.

While this word to document metaphor provides a nice connection to the original ap-
plication area, from an unsupervised clustering perspective LDA is simply a method-
ology for co-clustering users and venues in a k dimensional space, where k is the num-
ber of clusters as set by the researcher. However, because we have taken it out of its
initially intended purpose, using LDA on the present data comes with several assump-
tions. In particular, our use of LDA induces the assumption that the order of check-ins
is irrelevant. Because we are interested in social constraints expected to influence the
creation of long-standing communities, we feel that such a model is appropriate. Addi-
tionally, LDA presumes no strict correlations between the different latent topics. Later
models, including the Correlated Topic Model (CTM) [Blei and Lafferty 2007] and more
recently hierarchical PAM [Li et al. 2012] provide different assumptions that might
serve to improve the clustering of our venues by explicitly assuming correlations ex-
ist between topics. In the present work, we chose LDA to allow ourselves the ease of
interpretation it presents and because our previous results suggested that it provides
clusters of sociological interest.

2.3. Location Based Social Networks
Formally, foursquare is a socially-driven location sharing application [Lindqvist et al.
2011]. Services that fit this description are often referred to as Location Based Social
Networks [Zheng 2011]. On foursquare, users can check-in to different places (e.g. the
Starbucks on 10th Street) and have these check-ins be shared with friends both on
foursquare and on other social networking sites. In this section, we review qualitative
research on why people check-in, statistical models of human mobility and sociality
within the city using LBSN data and other works clustering venues to obtain repre-
sentations of communities. We detail how such work helps to both understand and
motivate efforts here.

2.3.1. Why Users Check-in. The data we, and indeed nearly all other works on
foursquare use, are a subset of all foursquare check-ins posted to the public Twitter
feed. Check-ins to Twitter are a specific and likely biased subsample of all foursquare
check-ins, as users are not required to share check-ins with their Twitter followers.
[Lindqvist et al. 2011] found that only 18% of the users they surveyed allowed check-
ins to be posted to Twitter, though [Cramer et al. 2011] found, less than a year later,
that 68% of users surveyed had foursquare accounts linked to Twitter. However, 63%
of those studied by [Cramer et al. 2011] had not shared their last check-in on Twit-
ter, for reasons most often associated with either the potential of a check-in to annoy
followers or only wanting to push “interesting” check-ins to this more public sphere.

This notion of pushing only interesting check-ins to Twitter extends to check-ins in
general and has been studied by several researchers under the term self representa-
tion. Self representation suggests that people only check-in to places that depict them
in a manner they desired to be viewed. Consequently, these venues may not truly por-
tray users’ actual interests nor the places they actually frequent. For example, users
surveyed by [Lindqvist et al. 2011] tended not to want to check-in to places they per-
ceived to be uninteresting (e.g. work) or embarrassing (e.g. fast food restaurants). The

5Note that we represent each venue as being unique from all others - this means, for instance, that the
Starbucks on 5th Street will be different than the Starbucks on 10th Street.
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effects of self representation have also been observed by [Tang et al. 2010], who draw
on social psychology literature to discuss the cognitive groundings for this effect.

Self representation affects our understanding of foursquare data in two important
ways. First, it presents an interesting and complicating factor in applying the notion of
homophily because it is difficult to determine real versus projected interests. Similarly,
as we will see, when attempting to understand community as expressed by venues
frequented by similar users, it is difficult to tell whether users are actually members
of a community or whether they merely want to be perceived as a member.

2.3.2. Statistical Modeling of LBSN data. The most pervasive use of LBSN data has been
to study how human movement and interaction are constrained in space. Early work
modeled human movement as a Lévy flight model [Brockmann et al. 2006], a model
also found to well-approximate the distance between two successive check-ins by the
same user on foursquare [Noulas et al. 2011]. More recently, it has been suggested
that models of human movement are better explained by taking into account the pop-
ulation density of a given area in addition to spatial constraints [González et al. 2008;
Cheng et al. 2011]. These concepts will be important when we develop our constrained
samples for the null distributions of our statistics.

Specific to foursquare data, [Bauer et al. 2012] use a spatio-temporal topic model to
understand the temporal and geographic regularities of different words in the textual
content of tweets that included a foursquare check-in. They observe that regularities
in time and space of different words uncover the dynamics of certain regions in New
York City, such as areas of work and areas of tourism. [Ferrari et al. 2011] and [Kling
and Pozdnoukhov 2012] use LDA to understand the temporal and geo-spatial dynam-
ics of different cities (including New York City), finding clear distinctions in temporal
signatures between different topics. These previous uses of LDA, though applying dif-
ferent assumptions and asking different questions, provide some precedence for its use
here. However, an important point these works do not address is the extent to which
venues communities uncovered by LDA are homogenous along the dimensions stud-
ied. While aggregate data is interesting when compared across clusters, we focus on
within-cluster variance and the applications that it presents.

Though questions of spatial and spatio-temporal patterns dominate the literature,
recent work has also begun to focus on sociality, with an emphasis on the effects of ho-
mophily. Early work using location information to model homophily between individu-
als included efforts by [Li et al. 2008]. Since these efforts, it has been shown that the
location of a user can be predicted to some extent based on the location of their friends
on social networking sites [Sadilek et al. 2012; Scellato et al. 2011]. [Cho et al. 2011]
uncover correlations between human geographic movement and the social structure of
the population they study, also considering the temporal constraints on where people
move throughout the day. In addition to works providing insight into human behavior,
research in clustering users has also led to methods for providing recommendations to
users based on methodologies similar to those used here [Bao et al. 2012].

Additional work has begun to move beyond spatio-social data as well, including for
example textual information from user posts [Vasconcelos et al. 2012]. In a related
vein, [Noulas et al. 2012b] show that categorical features of venues on foursquare are
a reasonable predictor of human movement. Indeed, their work, which compares how
a variety of constraint-based predictors can be used to predict human movement is
highly relevant to our work here by showing that spatial, categorical and social factors
all play a role in human movement. Though it is well known that homophily induces
correlations in human behavior, this work, as well as the others discussed here, makes
clear that these tendencies are observable in LBSN data.
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The$Unimodal$Venue$Network$is$
the$same$in$both$cases$

Project$to$1D$

Three$users$each$
a;end$two$venues$

Project$to$1D$

The$same$user$a;ends$
three$venues$

Fig. 1. An example of how information is lost when transforming a bimodal network of users to venues
(where links are checkins) to a unimodal network of venues to venues (where links are some function of
shared user base)

2.3.3. Modeling Collections of Venues. Several recent works have utilized foursquare to
infer communities via the clustering of venues. [Cranshaw et al. 2012] use spectral
clustering to understand how foursquare data gives insight into the dynamics of neigh-
borhood boundaries in urban areas. [Lawlor et al. 2012] cluster using a venues using
the OSLOM algorithm, a new methodology for finding statistically significant subsets
of the data. The authors find that “different cities have varying degrees of stratifi-
cation”, but that “[f]urther research is required to understand if cultural, racial or
socio-economic segregation can be the reason for this” (p. 6).

Both of these works use a unimodal representation of the network of venues, created
by computing some measure of the shared user base between each pair of venues con-
nected in the underlying network representation. While a practical methodology when
considering a sparse, geospatially regulated venue network, it is well known that the
projection of a bimodal network (here, of users and venues, with links representing
check-ins) onto a unimodal network (of venues to venues) loses a significant amount of
information [Barber 2007].

Consider, for example, Figure 1, where we see on the left three venues in the bimodal
user-venue network that have been checked in to by the same user (where the blue fig-
ures represent people and the trapezoids represent venues). On the right, we see three
venues which are only connected in a “six-path” [Opsahl and Panzarasa 2009]; that
is, the three venues are connected by three users, each of whom attended two of the
same venues. Though these two bimodal networks depict different ways in which these
three venues are connected, the unimodal projection of these two bipartite networks
(e.g. using cosine similarity) results in an identical network of venues. In the present
work, we consequently find it desirable to use a methodology that clusters the bipartite
network explicitly in order to retain the information in the underlying data.

A variety of algorithms exist to cluster bipartite networks [Fortunato 2010]. How-
ever, the data we use presents a variety of restrictions that lead us to the utilization
of a Bayesian latent variable model, namely LDA. First, many of the bipartite cluster-
ing algorithms place each element into a single community - in the case of foursquare
venues, it is more likely that certain places, like the movie theatre or the grocery store,
may be central to multiple communities. Second, those works that allow nodes to exist
in multiple clusters generally focus on the concept of a “bi-clique” - the natural exten-
sion of a graph clique into bipartite networks. Through exploration of bi-cliques in our
data using the BCFinder application [Lehmann et al. 2008], we find a large number
of very small bi-cliques that provide little information of relevance to our hypotheses.
This is due to the existence of venues with extremely high degree (i.e. stadiums). Using
an asymmetric prior over the topics, LDA is able to overcome these uneven distribu-
tions over the network [Wallach et al. 2009a].
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Finally, we do not expect all venues to be strongly associated with a community -
some venues, particularly those with lower levels of check-ins, may simply be unim-
portant to any existing social community. We therefore desire a clustering algorithm
that is able to filter out such uninteresting nodes from the model. While OSLOM, the
method used by [Lawlor et al. 2012] fits this conceptualization, it has not yet been ex-
tended to bipartite networks. Though this is an interesting avenue of future work, LDA
provides a second, equally applicable clustering framework that fits the requirements
specified above.

3. METHODOLOGY
In this section, we first describe how we obtain check-in data from foursquare through
Twitter, information on venue location and category from foursquare and information
on the racial and income distributions that we will use for each venue from the US
census. We then describe how we use LDA to cluster venues into communities and
how we test for the best parameterization of LDA. Following this, we detail four statis-
tics, one for each social constraint, that define the extent to which each community is
homogenous with respect to that constraint. Finally, we detail an algorithm used to
bootstrap random clusters, which we can use to see how much more homogenous each
cluster our model finds is on each constraint than we would expect by chance.

3.1. Data Collection
The data we use is a set of approximately 450,000 check-ins posted to Twitter from
around 35,000 users of foursquare located in New York City. These data are part of a
larger dataset given to us by the authors of [Cranshaw et al. 2012], formed by pulling
foursquare check-ins visible to the public Twitter stream. No attempt was made to
uncover social connections between users checking in. In total, the data comprises
approximately 18 months of foursquare check-ins.

Each check-in provides a unique user ID from Twitter, the time-stamp of the check-
in and the ID of the venue at which the check-in occurred. Using this venue’s ID, the
original data collectors also obtained the venue’s name, geo-location, and “category”
information by querying the foursquare API6. These categories are drawn from a set
of hierarchical names given by foursquare - examples include “Food::Burger Joint”,
“Food::Bakery” and “Travel Spots::Boat or Ferry”, where the “::” operator separates
levels of the hierarchy.

In addition to this information provided by the original data providers, we here in-
troduce racial, income and population size values for each venue. These values, de-
scribed in more detail below, represent an estimate of these three quantities for the
residents living in the same census block as the venue. This information is drawn from
the 2011 American Community Survey (ACS) 5-year sample7. The ACS is a yearly
collection of census-type data that provides information down to the level of a census
block (between five and ten city blocks within Manhattan, and roughly a square mile
in less populated areas of our dataset). We note that although nearly all venues in
the communities we study (79%) are in their own census block, there do exist venues
that share the same block with another venue and thus not all are unique. Further
limitations of this data are discussed in Section 6.

In sum, for each point, we collect information on four factors representing social
constraints along which communities may be homogenous - location and categorical
information about each venue and racial and income details of residents of the census
block in which the venue exists. We also collect the population size of the block each

6https://developer.foursquare.com/index
7http://www.census.gov/acs/www/
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Table I. Parameters and tested val-
ues for model specification for LDA

k 20,40,80
MinUser 1,4

MinV enue 1,4,9
BinarizeData Yes, No

a 0.6,20,50,100
MinWeight 0.005,0.01,0.1

venue is located within, which we will use when creating our bootstrapped samples.
In order to avoid biases from missing data, we ignore venues that do not have data
on all five of these points. Few venues fit this description, and those that did tended
to be venues missing categorical information, which were often residences or other
places checked-in to by few users anyway. In our final dataset (including the additional
cleaning steps described below), we study approximately 13,000 venues.

3.2. Clustering with LDA
Authors utilizing LDA often test multiple parameterizations and utilize the model
which performs best on some outcome metric, typically a function of the likelihood of
left out data. Table I gives the parameter space for LDA that we consider in the present
work. One well-known pitfall of LDA is the need to fix the number of topics, k, when
deciding on a model. Thus, it is common to test for different numbers of topics in any
study using LDA. However, using the methodology out of its original context provides
additional parameters that must be considered when selecting a model.

First, many works utilizing LDA for text analysis pre-process the data by removing
terms that occur rarely and documents that have few words. We experiment with a
variety of cut-offs for the minimum number of check-ins per user, MinUser, and mini-
mum number of checkins per venue, MinV enue, that we use to determine whether or
not to include the given user or venue in our dataset. Second, we leverage a version
of LDA that computes the posterior using an asymmetric prior on the topic distribu-
tions8. This form of the model has a tendency to move more popular “words” (venues)
into the same clusters [Wallach et al. 2009a], allowing us to implicitly account for the
large variations in popularity of the different venues. This model provides us with an
additional parameter, a, which is used to define the unevenness in the prior distribu-
tion over the latent variables. Though a is optimized during estimation of the model,
we check to make sure that starting conditions do not have an obvious effect on the
new domain.

Third, because LDA is often used as a heuristic to provide a surface-level under-
standing of data, the discretization of the posterior distribution of “words” (venues) to
“topics” (communities) is generally made in an ad-hoc fashion. That is, in general, the
top N words for each topic are said to be representative of the topic regardless of their
actual weight in the posterior. As an alternative, we vary a cutoff value,MinWeight, at
which a venue is determined to be associated with a given community. All venues with
a probability greater than MinWeight in the posterior of any cluster are considered to
be representative of that venue community, and all venues below this value are consid-
ered to be noise and thus un-representative. Finally, our previous work suggested that
binarization of the user-venue vectors provided a much better qualitative interpreta-
tion of the data. That is, we found more interesting clusters by representing each user
as a binary vector over all venues, where a venue is set to 1 if the user ever checked-
in to that venue and a 0 otherwise, and ignoring the additional information provided

8The MALLET toolkit was used to run all LDAs
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when users check-in to the same venue multiple times. We test the effectiveness of this
decision quantitatively on our ability to obtain stable clusters in the present work.

Our outcome metric to determine the best model parameterization is based on the
stability of the resulting clusters across two independent subsets of the data. For each
parameterization, we split the dataset into two temporally contiguous, equally-sized
samples of check-ins and run LDA on the two samples. We choose to split the data into
two samples, as opposed to a higher number of samples, because splitting a higher
number of times would have allotted too few check-ins to each sample. We then com-
pare the resulting clusters using a variant of the Normalized Mutual Information
(NMI) metric for overlapping communities, developed by [Lancichinetti et al. 2009].
NMI is a measure of the extent to which two clusterings of two possibly unequal sets
of data are the same. An NMI of 1 is given when the two clusterings are exactly the
same, a value of 0 is given when the two clusterings are entirely different.

Intuitively, we would expect that NMI would increase as all parameters except for k
increase, as these parameters set thresholds at which we remove information that can
be considered noise in some way. While we find this to generally be the case, several of
the parameterizations produced communities which were too small to be of practical
interest. We decide to ignore any parameterizations that provided venue communities
with a mean size less than 10 (i.e. runs where on average, each community was repre-
sented by less than ten venues). The selection of ten venues as a cutoff was made based
on a qualitative exploration of the resulting data, and may be considered an additional
parameter to be tested in future iterations of this work.

3.3. Measuring Social Constraint Within Clusters
In this subsection, we introduce the statistics used to measure the level of homogeneity
of a given community on a given social constraint. We first define a pair-wise distance
metric for each constraint. A statistic to measure the homogeneity of a community
on the given constraint is then calculated by determining the mean of the pairwise
distances for all venues within the community. While a host of other metrics exist to
explore the homogeneity of a given vector or numeric value, we find that mean pair-
wise distance gave intuitive responses for our dataset while still being conceptually
simple. Below, we give the mechanism used to determine pairwise distances between
two values for each of the four constraints.

3.3.1. Spatial Constraint. The Euclidean distance between locations of the venues ex-
pressed as latitude/longitude points is used.

3.3.2. Interest Constraint. Recall that the category schema used by foursquare is hierar-
chical. Pairwise distance is calculated via a slight variation on depth-first search of the
hierarchy of interests. Two venues are maximally similar in interest when they match
exactly and are both of depth 2 or 3 (very few venues were described at all three levels
of the hierarchy, hence we treat these the same). If this is the case, the venues receive
a distance score of 1. Otherwise, the distance is specified by 4− L, where L is the first
level of the tree at which the two categorical representations differ. The value L has a
maximum of 2 and a minimum of 0. Thus, ‘A::B’ and ‘A::C’ would have a distance of 3,
‘A’ and ‘B::C::D’ a distance of 4, and so on9.

3.3.3. Income-based Constraint. To represent the income level of a census block, the me-
dian household income level is used. Each venue’s income value is thus the median

9Note then that we “score” each level as a distance of 1, not choosing to decrease this value at lower levels
of the hierarchy. This decision was made because we could not justify an appropriate scale to define the
shrinkage in distance. However, this may be an interesting avenue for future work.
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household income of the block in which it is located. The pairwise distance between
two venues becomes simply the absolute difference between the two values.

3.3.4. Racial Constraint. For each census block, we obtain best estimates of the number
of people described by six different racial categories. The racial categories used are
“White alone”, “Black or African American alone”, “Asian alone”, “Some other race
alone”, “Two or more races” and “Hispanic or Latino”. For each venue, we thus have
a six dimensional vector. The vector for each venue is normalized to sum to one, and
then Euclidean distance is used to define the distance between two venues.

3.4. Bootstrapping Null Distributions
Our interest in understanding how latent factors affect sociality is an area of much
work in the field of social network analysis. Exponential Random Graph Modeling
(ERGM) [Robins et al. 2007], the Multiple-Regression Quadratic Assignment Proce-
dure [Dekker et al. 2007] and latent space modeling [Krivitsky et al. 2009] have all
been used to explore the extent to which latent effects influence sociality. However,
these models generally apply to unimodal data and are known to have trouble with
the quantity of data considered here [Snijders 2011].

Additionally, these models are used to consider the magnitude of latent effects on
driving sociality across an entire system. In contrast, our focus is on the effects of
latent factors on forming particular venue communities. In order to do so, we must
develop an understanding of the level of homogeneity within a community on each
constraint as compared to chance. Because we already expect communities our model
uncovers to be homogenous, it does not make sense to compare them with each other.
Consequently, we must obtain randomized collections of venues to compare against,
and we therefore employ a bootstrapping approach [Efron and Tibshirani 1993]. Boot-
strapping involves two steps. First, we resample the full data with replacement to
generate a collection of venue communities that are formed by chance. Second, we
use this set of randomized communities to create a null distribution for each statistic
calculated on each cluster our model finds. This distribution can then be used to test
whether or not a statistic measured on a community discovered by LDA is significantly
different than one created by chance via a simple hypothesis test.

The general null hypothesis under study is thus that, along a given social constraint,
a community generated via LDA will be no more homogenous than a community
formed by chance. However, the vast amount of prior evidence suggests the need for a
more discriminatory statement. Here, we formulate two different constrained null hy-
potheses, one for the geospatial constraint and one for the other three constraints. We
use these null hypotheses to develop algorithms to create the bootstrapped samples of
randomized communities.

The null hypothesis we use to create the sampling distribution for the geospatial
statistic is the following: “the given community is no more homogenous in space than
a randomized community of the same size containing venues within census blocks of
similar population size.” We take a non-parametric approach to controlling for popula-
tion size. To do so, we obtain a kernel density estimation10 of the population sizes for
the venues in the community found by LDA. We can then generate randomized commu-
nities by repeatedly sampling random collections of venues that have approximately
the same distribution of population size. Obtaining bootstrap samples regulated by
the distribution of population size controls for the “urban-ness” of a cluster, which has
been shown to affect travel patterns of individuals [González et al. 2008; Cheng et al.
2011].

10The bandwidth of the kernel is estimated using Scott’s rule [Scott 2009].
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ALGORITHM 1: Bootstrapping process for Racial, Income and Interest homogeneity
Input: Set of clusters, C, and NumDesiredSamples
Output: Bootstrapped samples for each cluster in C for a given statistic
for each cluster, c in C do

Obtain kde, the Kernel Density Estimator for the population sizes associated with venues
in c;
Compute D, a vector of the distance of each venue in c from the geographic center of c;
Sort D into 5 equal sized bins, B0, B1, B2, B3, B4;
clusterSamples = [];
while |clusterSamples| < NumDesiredSamples do

sample = [];
Get random venue, v0 according to the distribution over all venues defined by kde;
Obtain N0, all venues within max(D) of v0;
for i from 0 to 4 do

define NBi , the set of points in N0 within distance range [Bi,0, Bi,|Bi|−1] of v0 ;
if |NBi | ≥ |Bi| then

Add |Bi| random points from NBi to sample;
end
else

// This sample does not fit the constrained null hypothesis
sample = [];
break;

end
end
// If we have a valid sample
if |sample| == |c| then

clusterSamples.append(sample);
end

end
// We have enough samples
yield clusterSamples;

end

While controlling for population is an adequate condition to test for geospatial ho-
mogeneity, the other three social constraints we consider are highly correlated not only
with the extent to which they exist in an urban setting, but also with space itself. For
example, racial distribution in a community located in a small geospatial area is al-
most always going to be more homogenous than a community dispersed over a larger
spatial region even when controlling for population size. Consequently, a more appro-
priate null hypothesis for these social constraint statistics is the following: “The given
community is no more homogenous along constraint X than a randomized community
of the same size, within census blocks of similar population sizes, in a similarly ho-
mogenous spatial region”. To obtain a bootstrapped sample of communities from this
null distribution for each statistic for each community found by LDA, we utilize Algo-
rithm 1.

For each community, we first compute the location of it’s geographic center and cal-
culate the distance of each venue in the community to this center. We store these
distances in the set D, where Di is the ith furthest venue from the community’s center.
We then cut D into five bins, B0, B1, B2, B3, B4 each having an equal (up to a difference
of one) number of venues. We chose to use five bins as opposed to a smaller number
because it assured that all bins would have at least one venue for all communities we
obtained by LDA. We chose five as opposed to a larger number of bins because we found
it gave a reasonable spatial distribution and adding bins would increase computational
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costs. After this procedure, B0 contains the smallest |D|/5 distances, B1 contains the
second set of |D|/5 smallest distances, and so on. Each bin is defined by a distance
range, [Bi,0, Bi,|B|−1]. The term Bi,0 defines the first element in bin Bi and thus, by
construction from the ordered set D, the minimum distance in Bi. The term Bi,|B|−1
refers to the final element in Bi and, consequently, the element with the maximum
distance from the community’s center in that bin.

We can use the number of venues per bin and the distance ranges of the bins to
control the spatial spread of the bootstrapped samples by drawing randomized com-
munities that can be placed into bins of equal size and equal distance ranges from a
given center point. This process is straightforward. While we do not have enough sam-
ples, we select a random venue, v0, to serve as the geographic center of a new sample.
This venue, v0, is sampled according to its probability in kde, the kernel density es-
timator of the actual cluster’s population size distribution. Using a KD tree [Bentley
1975], we obtain N0, the set of all venues within distance max(D) of v0. We can then
sample from N0 a collection of venues that fit into the same binned distribution as
those from our community of interest.

That is, for each bin Bi, we take the subset of venues in N0, defined as NBi
, that are

within the distance range of Bi to v0. If there are fewer than |Bi| venues that fit this
description, the sample will not fit the null hypothesis and is discarded. The process
then begins again with an empty sample at bin B0. If, however, |NBi | ≥ |Bi|, we draw
from NBi uniformly, pulling |Bi| of these venues and adding them into our sample. We
then continue to the next bin. If there are enough venues in N0 in each of the five
distance ranges, the sample fits the null hypothesis and is added to our set of samples.
We continue this process until we have reached the desired number of randomized
community samples.

The outcome of Algorithm 1 is, for each cluster found by our model, a set of
NumDesiredSamples random venue collections each having approximately the same
spatial and population distribution as the cluster itself. We run Algorithm 1 for each
of the three constraints, thus generating unique sample sets for each statistic, for each
cluster. From these samples, we can define the null distributions we will use in our
analysis by calculating our statistic on the randomized communities in the set of boot-
strapped samples.

4. RESULTS
In this section, we first discuss results of our parameter selection experiments carried
out to find the best model under consideration. We then use the resulting model to
explore our two hypotheses.

4.1. Optimal LDA Parameterization
To find the optimal parameterization of LDA, we explore the parameter space defined
in Table I. We define optimal as the parameterization having the maximum NMI across
clusters obtained from the two independent subsets of the data. As LDA is a stochastic
process, the NMI for a given parameterization was determined by averaging across
three replications.

Figure 2 shows results from a subset of the parameter space in order to provide a
clearer interpretation of the results. More specifically, we only show results for k = 20
which proved, as expected, to be the best setting. We also only show results with binary
data, where the first partition gave, on average, 2.5 times more information about
communities in the second time period than in the multinomial case. We suspect that
the cause of this difference is that users tended to have multiple check-ins to venues
that were of interest to few others, such as home and work [Lindqvist et al. 2011].
Finally, results are only shown with a MinWeight of .005, as all other MinWeight
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Fig. 2. The mean NMI across three runs. The x-axis represents the minimum number of check-ins needed
to include a user in the clustering; color represents the same, except for venues. The grey bars above the
plots are different values for a. Confidence intervals represent a single standard deviation from the mean
estimate in both directions.

values provided clusters where the mean number of venues per community does not
fit our specified criterion of 10.

From Figure 2, we see that our outcome metric faired best when a was set to either
0.6 or 20 and when MinV enue = 5 (MinUser appeared to have a minimal effect).
Within these parameterizations, a maximum NMI of .58 was reached. This suggests
that regardless of model parameters, the communities produced do differ between the
two time periods. This is to be expected - many communities are dynamic entities
within cities [Cranshaw et al. 2012]. However, such a high value for the NMI of the
two sets of clusters suggests that while a portion of the communities discovered are
dynamic, many communities are stable over time with optimal model parameters.

We re-ran the top three parameterizations according to mean NMI on the full
dataset ten times in order to generate a final clustering to test H1 and H2. We
select as our final set of communities the output of the run maximizing the em-
pirical log-likelihood of left out data using the “left-to-right” algorithm described in
[Wallach et al. 2009b] with 10% held out data. The final model came from one of
the ten runs having the parameterization with the highest mean NMI in Figure 2
(k = 20, MinWeight = .005, Binarize = Y es, a = .6, MinUser = 5, MinV enue = 5).
Note that we use both stable and dynamic communities in the following subsection,
where we explore results for our two hypotheses.

4.2. Main Findings
Figure 3 show the spatial positions of each venue in the twenty communities discov-
ered. Black dots represent venues, red dots the geospatial center of the community, and
blue a gaussian kernel density estimate to ease the effects of over-plotting. Commu-
nities homogenous in space exist almost entirely in Manhattan, the city center (Com-
munities 1-5,11,12,18 and 19) or Brooklyn, the most highly populated borough (0 and
14).

4.2.1. H1: Social constraints and cluster formation. Our first hypothesis, H1, was that at
least one the four social constraints studied would be significantly more homogenous
than chance in each community. Figure 4 shows results for each constraint in a dif-
ferent plot. Within each plot, the statistic for each community is given as a red dot.
The black lines represent the 95% confidence interval (CI) of the bootstrapped sam-
ple for each statistic, computed using a pivot interval [Wasserman 2003, p. 110] with
NumDesiredSamples set to 1,000. Where the red point falls outside of the bootstrapped
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Fig. 3. The spatial distribution of the venue communities. Each black dot represents a single venue within
the community. The red dot represents the geographic center. In blue is a kernel density estimation of the
spatial distribution of venues to ease the effects of over plotting. The width of each map is approximately
thirty miles.
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Fig. 4. The four panels represent the outcome for each community for each of the four social constraints
tested. The red dot represents the measured value of the statistic associated with the constraint for the
given community. The black line is the 95% bootstrapped confidence interval of the null distribution of the
statistic.

CI, a standard hypothesis test would conclude that there is significant evidence to re-
ject the corresponding null hypothesis at α = .05. If the point falls to the left of the
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Table II. Name and Categories of Venues in with Community 5

Place Name PlaceCategory Place Name Place Category
Duplex Nightlife Spot::Gay Bar Boiler Room Nightlife Spot::Gay Bar

Stonewall Inn Nightlife Spot::Gay Bar Splash Bar Nightlife Spot::Gay Bar
XES Lounge Nightlife Spot::Gay Bar Therapy NYC Nightlife Spot::Gay Bar

Posh Nightlife Spot::Gay Bar GYM Sportsbar Nightlife Spot::Gay Bar
Barrage Nightlife Spot::Gay Bar Ritz Bar and Lounge Nightlife Spot::Gay Bar

Boxers NYC Sportsbar Nightlife Spot::Gay Bar Industry Bar Nightlife Spot::Gay Bar
Elmo Restaurant and Lounge Food::American Restaurant AMC Empire 25 Movie Theater::Multiplex

High Line Park Great Outdoors::Park New York Penn Station Travel & Transport::Train Station
Blockheads Burritos Food::Burrito Place Vynl Food::Breakfast Spot

Chelsea Clearview Cinemas Movie Theater::Multiplex Bamboo 52 Food::Sushi Restaurant

range, the community was significantly more homogenous, to the right, significantly
less homogenous.

As is clear, geospatial proximity is estimated to be the most important constraint on
community formation. Only seven communities are not significantly more homogenous
in space than expected by chance, even when controlling for population. While three of
these seven have homogeneity statistics near the end of the 95% bootstrapped inter-
val, the fact that not all twenty are significantly different from null can be grounded
in previous work. [Noulas et al. 2012a] show that while spatial constraints play an
important role in human movement, at small spatial scales the effect is significantly
lower. Our findings differ from this previous work, however, in that we find this with
respect to the spatial distribution of social communities as opposed to human mobility.

Importantly, we also consider the fact that communities not significantly homoge-
nous in space should be homogenous on a different social constraint. To this end, we
observe that Community 10 is significantly more homogenous than the null model with
respect to income. While we will discuss in our results associated with H2 a case where
spatial and income constraints are consolidated, Community 10 presents a rather sur-
prising finding. Our results suggests that this community is as spread in space as one
would expect by chance (controlling for population size), but that the venues sit in
areas of homogenously low income levels. We explore this in more detail in Section 5.

Community 10 is, however, the only one that exhibits quantitative support for H1
out of the seven communities not homogenous spatially. This may be due to the subset
of constraints we consider in the present work or to various other biases, discussed
in Section 6. We do note, though, that Community 6 and Community 9 have interest
homogeneity statistics well below the mean bootstrapped estimate. In addition to the
three communities that qualitatively appear to differ from the null hypothesis of the
geospatial statistic, qualitative evidence thus suggests that there may be only one
cluster not aligned with H1.

4.2.2. H2: Consolidated social constraints. H2 concerns the extent to which communities
significantly homogenous on multiple social constraints are socially isolated. In total,
we found three communities homogenous on more than one social constraint. In Com-
munity 5 and Community 3, both spatial and interest homogeneity were significant.
In Community 0, spatial and income homogeneity were both significant.

Table II shows the venues in Community 5. Twelve of the twenty-one venues in this
community are “Gay Bars”. Similar venue communities were observed in our previous
qualitative work in both the New York City and Bay Area data sets. To the extent
that the gay community is well known to be an isolated minority culture [Smith-Lovin
and Douglas 1992; McCabe et al. 2010], Community 5 presents direct support for H2.
Community 0, homogenous on the income and spatial dimensions, also supports our
hypothesis. It contains venues that are all located within Williamsburg, a neighbor-
hood of Brooklyn widely regarded as one of the most “hipster” neighborhoods in the
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Fig. 5. A histogram of the categories for the venues in Community 3 (the top level of the hierarchy is
excluded).

United States11. One of the general goals of the “hipster” movement was (and is) to
create and portray a unique identity [Alfrey 2012]. The hipster community thus aligns
with Blau’s hypothesis in that hipsters generally seek their own culture and therefore
tend segregate themselves from the rest of the city.

While these two clusters provide support for H2, it is important to consider the im-
plications of our data source on this finding, in particular the issue of self represen-
tation. Homosexuals, as a discriminated minority community, are more likely to iden-
tify strongly with their distinct and minority culture than many other social groups
[Smith-Lovin and Douglas 1992; Veelen et al. 2013]. Hipsters, in an attempt to de-
pict a unique identity, may be similarly affected [Cooper and Denner 1998; Ethier and
Deaux 1994]. This suggests that users associating themselves with the homosexual
or hipster cultures in New York City are more likely to check in to places representa-
tive of these cultures than members of more mainstream communities. While this does
not discredit the support for H2, it does suggest that communities surrounding minor-
ity cultures in our model (and other models using foursquare data) may be idealized
versions of underlying social structures, representing only the salient aspects of that
community.

In contrast to the previous two cases, where the underlying social group is inferable,
Community 3 contains a high level of noise. Figure 5 provides the histogram of the
categories represented by the venues in Community 3. A closer inspection of the nu-
merous bakeries reveals that seven of nine are located in the Chinatown neighborhood
of Manhattan. Homogeneity of these specific venues in this particular location suggests
the tentative hypothesis that the community represents individuals of a particular na-
tional culture (with a devotion to specific delicacies), which may or may not be socially
isolated. Alternatively, in line with previous results, this community is simply repre-
sentative of those that desire a self representation online of this particular form of
Chinese culture. Against intuition, however, racial homogeneity is significantly higher
than we would expect from chance, as these bakeries are the only venues in the cluster
to exist within an area with a high population of residents of Asian descent. While the
hypothesized underlying community would support H2, it thus appears that clustering
methodologies explicitly leveraging social constraints (as opposed to testing for their
effects) may be necessary to uncover it.
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Fig. 6. Venues associated with Community 17

5. DISCUSSION
We provide here a short discussion of two specific results from our study of H1 that
are of qualitative interest. The first result is the existence of a community that was
homogenous on income but not on space in the New York data. One-tailed paired t-
tests of the median household income distribution of Community 10 against all other
communities were completed as planned comparisons with α = .05. Results show that
Community 10 had a significantly lower median household income across its venues
than 15 of the 19 others discovered. There thus exists reasonably strong evidence that,
as opposed to what one might expect, this cluster of venues represents a community
where people in lower income levels go out of their way to places in other low income
areas. The second finding of interest is the community that does not, even in a qualita-
tive sense, match the predictions of H1. Figure 6 shows a close-up view of the venues
in this community. From the plot, a reasonable qualitative explanation is that peo-
ple within the urban setting must go out to less populated areas in the surrounding
neighborhoods to access certain venues, like IKEA and Walmart.

The common theme in these two findings is the apparent effect of non-social factors.
In particular, it is quite possible that these communities are the result of what we
might term “goods effects”, where product constraints rather than social constraints
mediate movement. In the case of Community 17, goods that cannot be acquired within
a user’s traditional radius of movement must be obtained from locations outside the
city center in an array of directions. In the case of Community 10, a similar argument
applies, although the restriction is not because of the location of goods but rather be-
cause of their cost.

6. CONCLUSION
In the present work, we use foursquare data to consider the extent to which social
constraints affect the formation of communities within the urban environment (H1)
and how consolidation of these constraints may indicate the existence of isolated so-
cial groups within the city (H2). We observe significant qualitative and quantitative
support for H1. Specifically, we find that all but one of the communities uncovered
presents qualitative support for the hypothesis and 70% of the communities found
provide quantitative support. In addition, we find that even when controlling for popu-
lation size, geospatial position is estimated to be the most influential constraint on so-

11Forbes magazine recently referred to Williamsburg as the “unofficial East Coast birthplace of hipsterism”;
http://www.forbes.com/sites/morganbrennan/2012/09/20/americas-hippest-hipster-neighborhoods/
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cial community formation. We did, however, uncover an interesting case where spatial
homogeneity did not appear to affect community formation, while income homogeneity
did. We also observe reasonable support for H2. Specifically, two of the three communi-
ties we discovered, which we aligned to homosexual and hipster cultures respectively,
are well known to exist in relative social isolation from the rest of the city. Results for
the third community were inconclusive, as there was some, but not enough, evidence
of a culturally distinct community.

These inconclusive results are indicative of the exploratory and sociological nature
of our study, and we note that results may be affected by several biases. First, null
hypotheses may be under or over-constrained, leading to confidence intervals that are
too small or too large. Second, LDA is used outside of its intended domain, and is fur-
thermore a relatively simple Bayesian framework. While this allows for increased in-
terpretability, our model may very well have detected some clusters of venues that are
poor representations of social communities. Third, our use of population-level statis-
tics, while perhaps the best available data for our purpose, may be subject to scrutiny
in their application to judging homogeneity of those social constraints [Butts et al.
2012]. For example, as census data represents residents of a particular location, it
may not be representative of the actual population distribution at certain times of
the day (e.g. business districts). Finally, the data used does not allow us to explicitly
distinguish between certain socio-psychological processes of interest, namely self rep-
resentation versus social segregation.

Beyond addressing these limitations, interesting avenues of future work might in-
clude using Dirichlet Multinomial Regression (DMR) based topic models [Mimno and
McCallum 2012], like the one used in [Yuan et al. 2012] to explicitly incorporate into a
model the social constraints studied as opposed to testing for their latent effects. Such
a model is particularly interesting in that DMR can be considered a direct extension
of McFadden’s discrete choice model [Guimaraes and Lindrooth 2005]. Thus, such a
model could be used to seed homophily-based multi-agent simulations [Carley et al.
2009] of the movement of people within a city, as agents could have an empirically-
grounded cognitive model of movement decisions. This work would complement recent
efforts to include geospatial information into such models [Moon and Carley 2007; Car-
ley et al. 2011].

Regardless of the avenue of research pursued, however, it is evident that the influx of
“big data”, particularly with respect to location-based data, has created new opportu-
nities to understand human behavior in the urban environment. Our work has barely
scratched the surface of what is possible with respect to the study of macrosociological
processes. To put the magnitude of this opportunity in some context, we only explore
one of the fourteen hypotheses Blau presents in a single article based on his latent
space framework [Blau 1977b]! While the costs associated with these opportunities,
in particular the use of observational, mediated data, are not to be regarded lightly,
we believe that the works we have relied upon here and the efforts we have provided
are only the beginning of how new data sources can be used to improve what we know
about the places so many of us live.
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