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Abstract

We describe a new methodology to infer sentiments held towards identities and behaviors

from social events that we extract from a large corpus of newspaper text. Our approach draws

on Affect Control Theory, a mathematical model of how sentiment is encoded in social events

and culturally-shared views towards identities and behaviors. While most sentiment analysis

approaches evaluate concepts on a single, evaluative dimension, our work extracts a three-

dimensional sentiment “profile” for each concept. We can also infer when multiple sentiment

profiles for a concept are likely to exist. We provide a case study of a large newspaper corpus

on the Arab Spring, which helps to validate our approach.

1 Introduction

Let us define a social event in the sense of Heise (2007) as a situation in which an actor enacts a

behavior on an object. Further, let us assume that both the actor and the object are identities, which

we will define as nouns that are commonly used to allude to a social category (Tajfel & Turner,

1979). Finally, we assume that each identity has a particular affective meaning, or sentiment.

In theory, an infinite number of social events could occur between two identities on an everyday

basis. For instance, there are few concrete barriers that prevent all strangers that pass each other

on the street from shaking hands. In practice, however, there are many constraints on the social

events we are willing to engage in and those we will observe in our everyday lives. Some of these

constraints are hard, or physical. Geospatial distance, for example, acts as a barrier that restricts

the types of identities that come in contact. Others are “soft”, existing within our perceptions

of cultural norms. These soft constraints are particularly interesting, as they passively define the

“right” way to interact without any actual physical restrictions.
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For example, assume that you are a new elementary-school teacher. It is unlikely that your

first action will be to “beat up” your students, even though you are perfectly capable of doing

so. Rather, you would be considerably more likely to, for example, “advise” them. “Advising” is

an act that fits your, and almost everyone’s, intuitions for the identity of a teacher, the identity

of a student and the relationship between them. Now consider the situation where you observe a

policewoman roughly handling a suspect. Depending on your views on the police, your cultural

upbringing and the context in which you observe this act (among other things), your perception

of this event may range from an actor carrying out one’s duty as an officer to purely inhumane

behavior. Thus while some soft constraints, such as those imposing our views on teachers and

children, are almost universal (at least within a particular culture), the variability in our emotional

response to other events suggests the incredible complexities that can arise in understanding how

an individual perceives and engages in social events.

The present work is interested in developing a methodology that allows for a better understand-

ing of how one particular form of these soft constraints, affective constraints, mediate perceptions

of a particular set of identities engaging in a particular set of behaviors across many social events.

Specifically, we develop an approach that is able to infer affective meanings, or sentiments, of iden-

tities and behaviors from a large text corpus. These affective meanings, we will show, serve as

strong constraints on perceptions of social events within the corpus. In pursuing such a method,

three chief issues must be overcome.

Issue 1. While there are an increasing number of databases and tools for extracting world

events (e.g. GDELT; Leetaru & Schrodt, 2013) and social behaviors of individuals (e.g. social

media, mobile phone records), there is a surprisingly limited amount of data and computational

methodologies supporting the extraction of social events engaged in by the generalizable social

identities of interest (e.g. “teacher”). In the present work, we present a partial solution to this

problem. We first use dependency parsing (Kübler, McDonald, & Nivre, 2009) of newspaper data to

extract social events. We then manually clean the resulting output to pull out interesting identities

and behaviors from the noisy result of the dependency parse. While we are far from the first to use

dependency parsing to extract events from text (for a recent example, see O’Connor, Stewart, &

Smith, 2013), few, if any, have considered the goal of extracting events with the aim of using them

to infer affective characteristics of identities.

Issue 2. In order to make use of these extracted events, we must then address the issue of

how to model the affective constraints that restrict actions in and perception of social events. In

the present work, we use Affect Control Theory (ACT) (Heise, 1987, 2007; Robinson, Smith-Lovin,

& Wisecup, 2006), which provides a formal social psychological model that describes the following

(among many other things):

• The dimensions of sentiment along which we perceive identities and behaviors

• How social events change our perceptions of others

• How we engage in and think about social events in a way that confirms our sentiments
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ACT is a “control” theory in that it assumes humans seek to maintain preexisting, culturally

shared perceptions of identities and behaviors in transient impressions that are generated when

social events are observed or carried out. While we may try to maintain these meanings through

various methods, our efforts are all carried out in an attempt to reduce the deflection, or differ-

ence, between our impressions of individuals and culturally-shared sentiments of the identities they

represent. ACT assumes that events we expect, or that we are more willing to carry out, are gen-

erally low in deflection, as these events are easy to incorporate into our current world-views. For

example, the statement “the teacher advises the student” has been estimated to have a deflection

of approximately 0.8, while the statement “the teacher beats up the student” has a deflection of

15.41.

In ACT, the deflection of a social event is estimated based on two sources of data. First,

ACT scholars maintain a large database of survey results that serve as estimates for culture-wide

sentiments of a host of identities and behaviors2. These sentiments are defined within a three-

dimensional affective latent space that has been both theoretically and empirically validated (Os-

good, 1975). Second, ACT scholars have developed a set of change equations which mathematically

describe how the observation of a particular social event changes our perception of the actor, be-

havior and object involved in it. Given the position of these three entities in the affective space

and a change equation, the (unnormalized) Euclidean distance between the affective meanings of

the entities before versus after the event defines the level of deflection for the event. We can thus

use deflection to understand the relative likelihood of different social events, implicitly giving us an

understanding of the affective constraints imposed within the social system of interest.

Unfortunately, while ACT’s dictionaries already encompass thousands of identities and behav-

iors, the data within them are difficult to apply directly to a specifically themed corpus. While

collecting new data on new identities and behaviors of interest is possible, it currently requires

lengthy survey procedures. Additionally, ACT makes the tenuous assumption that point estimates

are sufficient to describe the affective meanings of identities and behaviors (Hoey, Schröder, &

Alhothali, 2013a). Finally, while the theory has been tested using survey methodology with indi-

viduals in several large cultural groups (e.g. nations), how best to identify any possible differences

within these cultures without additional surveys remains an open question. ACT thus holds the

potential to be used to provide insight into the affective constraints that shape social events and

their perceptions. However, both methodological and data issues prevent a direct application of

the theory in many settings of interest to scholars.

Issue 3. The third issue at hand is thus bow best to adapt the concepts involved in ACT into a

model that can overcome, at least in part, it’s current limitations. The primary contribution of the

present work is a probabilistic graphical model (Koller & Friedman, 2009) that provides an initial

and substantial step forward in this direction. The model we introduce has four desirable features

in that it:

1these values were computing using the INTERACT Java program (Heise, 2010a) with the Indiana 2002-2004

dictionary (Francis & Heise, 2006)
2http://www.indiana.edu/~socpsy/ACT/data.html
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• infers affective meanings for identities and behaviors not currently in the ACT dictionaries

• incorporates prior knowledge from existing ACT dictionaries

• infers where multiple “senses” of a particular identity or behavior exist within our dataset

• provides a variance for the sentiment of each sense of each identity and behavior

Our approach is the first effort we are aware of to apply ACT concepts in an automated way to

full text data. The statistical model we develop can be applied in a semi-automated fashion to any

text corpus from which social events can be extracted, making it a potentially useful tool across

a host of sociological domains. Further, from a natural language processing (NLP) perspective,

while many other approaches exist to extract sentiment from text (see, e.g. Pang & Lee, 2008),

such approaches typically exist on a single “good/bad” dimension. In comparison, our use of ACT

allows for a multi-dimensional approach to understanding sentiment in text. This approach is

critical in fully interpreting perceptions of identities, behaviors and social events (Osgood, 1975).

After describing the inner workings of our model, we provide a case study on a set of social

events extracted from a corpus of approximately 600,000 newspaper articles relevant to the Arab

Spring. After rigorous cleaning, the dataset contains 102 identities and 87 behaviors of interest

that engage in 10,485 social events over the span of 30 months. Of the 189 identities and behaviors,

only 84 (44%) exist in the original Affect Control dictionaries. Thus, we obtain new EPA profiles

for many of the important identities and behaviors of interest in our dataset, and can use these to

better understand how the English speaking news media perceived these identities and behaviors

as the social movement evolved.

Naturally, our understanding is limited by the quality of model output. To this end, we provide

a rigorous quantitative analysis of the effectiveness of the model on the task of predicting the

behavior one identity enacts on another. Our model’s performance improves over several baseline

approaches on the prediction task, though struggles with issues of data sparsity in comparison to

the strongest of our baselines. Still, the final model we present gives meaningful affective meanings

for the identities and behaviors within the dataset, which none of the baseline models are able to

provide.

As the quantitative analysis suggests that the model fits the data reasonably well, we also

(cautiously) consider the implications of model output on our understanding of news media coverage

of the Arab Spring. Most interestingly, we observe a discrepancy in the way major English-speaking

news outlets portrayed the generic Muslim identity as opposed to the more specific Sunni and

Islamist identities.

2 Related Work

In this section, we first provide background on Affect Control Theory. As our methodology also

draws comparisons to a variety of other tasks in the NLP literature, we also touch on efforts in this

domain, in particular existing approaches to sentiment mining.
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2.1 Affect Control Theory

2.1.1 Overview

Affect Control Theory, originally introduced by Heise (1979, 1987, 2007), presents a compelling

model of how perceptions of the affective meaning of identities and behaviors develop. ACT also

details how these perceptions can simultaneously exist for social categories and generic behaviors as

well as for specific individuals and individual behavioral acts. In detailing these processes, ACT uses

a host of ideas beyond the aforementioned concepts of identities, behaviors, the change equation

and deflection. We discuss here only the portions of the theory relevant to our model, which center

mainly around these four basic components. For those interested in a more complete discussion,

we refer the reader to the chapter by Robinson et al. (2006) and the book by Heise (2007).

For matters of convenience, we will use the term entities where we are discussing something that

applies to both identities and behaviors. All entities have an affective, or sentimental, meaning in a

three dimensional latent space, the dimensions of which draw from early work by Osgood (1975) on

measuring numeric profiles of affective meanings. The first dimension is evaluative, which describes

the “goodness” or “badness” of an identity or behavior. The second dimension is potency, which

describes the “powerfulness” (weakness) of an entity. The final dimension is activeness, which

defines the level of energy or excitedness of a given entity. Each dimension is defined on the

continuous interval [−4.3, 4.3].

Combined, these three dimensions form what can be referred to as the EPA space. Within

EPA space, all entities hold a particular position that defines their EPA profile. For example, the

EPA profile of the identity “teacher” is (0.72, 1.87, 1.41), indicating that teachers are relatively

good, powerful and active. In contrast, the EPA position of a student is (1.49, 0.31, 0.75), which

shows students are “more good” than teachers, but much less powerful and active3. EPA positions

of these entities, and many others, have been estimated by Affect Control researchers through a

vast collection of survey experiments run across individuals from a host of cultures4. These values

define the fundamental, culturally-shared meanings of identities and behaviors.

ACT assumes that the EPA profile for an individual instantiation of an entity may differ from

the generic entity’s EPA position. Thus, one may perceive a particular teacher as being “less

good” than teachers in general. While in general fundamental meanings are assumed consistent

throughout a culture, the theory also allows for the possibility that two different people may have

different perceptions of the EPA profile of a generic identity or behavior. Variations of this sort are

generally assumed to occur at the boundaries of social groups and social institutions. For example,

Smith-Lovin and Douglas (1992) show that individuals in a gay, religious institution had uniquely

positive views of the gay, cleric and congregation identities. As the authors state, these individuals

“transformed both religious and gay identities so that the homosexual person [could] participate in

religious rituals while not abandoning his or her gay identity”.

3Values from the Indiana 2002-2004 sentiment dictionary Francis and Heise (2006)
4The methodology involved in these surveys has evolved over time, and a thorough discussion can be found in

(Heise, 2010b)
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Thomas and Heise (1995) provide a broader exploration of these multiple senses, showing that

systematic differences do exist across social groups (e.g. gender) and via the extent to which

individuals are embedded in multiple networks. The model in the present work only partially deals

with the fact that different sentiments of the same entity may exist across social groups. On the

one hand, the model we use allows for the possibility of multiple perceptions of the same generic

identity. However, we also assume that one of the various possible perceptions for each entity in

our event data is representative of an American cultural standpoint as provided by a particular

ACT dictionary.

In addition to defining culturally shared sentimental meanings of entities, ACT also defines

how one’s perception of, for example, an individual teacher may develop as the teacher is observed

carrying out different social events. The perception of a particular actor, behavior and object that

we have before an event is known as the pre-event transient. The post-event transient describes

our perception of the entities in the event after the event has been completed. In general, social

events can be chained together such that transient impressions of a previous event become pre-event

impressions for the next. In the present work, however, we will assume that each event occurs in

isolation, and therefore that the pre-event impression are equal to their fundamental meaning.

The changes in impressions due to a particular social event are calculated in ACT using a

change equation, which gives the post-event impression from a function of the pre-event one. The

change equation mathematically defines the intuitive way in which pre-event impressions are altered

by the social event that is observed. For example, a teacher should be seen as “less good” after

beating up a child, and beating up should also be seen as less bad of an action. ACT postulates

that the greater the difference, or deflection, between culturally-shared, fundamental impressions

and post-event impressions is, the less likely an event is to occur. Thus, ACT postulates that we

“prefer” to perceive and engage in social events in a way that aligns with our fundamental beliefs.

Affect Control researchers have used survey data to estimate the form of and parameters for

the change equation (Heise, 2007; Smith-Lovin, 1987). They have found that the form of the

change equation may differ depending on national culture. In the present work, we assume for

computational purposes that there exists only a single, universal change equation. This assumption,

while still likely flawed, is supported by recent work that suggests differences in change equations

across cultures may be due at least in part to weaknesses in earlier estimation techniques rather

than to differences in the data (Heise, 2014).

2.1.2 Mathematical Model

Having given an overview of ACT, we now turn to the mathematical model given by the theory. To

do so, we first introduce the form of the pre-event transient vector for a social event. Equation (1)

gives this vector, which contains the EPA profiles associated with the three entities (actor, behavior,

object) in a social event.

f =
[
ae ap aa be bp ba oe op oa

]
(1)
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Given the form of this vector, we can now describe how a social event changes these pre-event

impressions to produce a post-event impression. This change occurs via the application of the

change equation to a particular vector f . Though a variety of estimation methodologies have been

used to estimate the change equation (Heise, 2007, 2014), the form of the equation is expected to

define a polynomial, multiplicative combination of the pre-event transients. Thus, we can represent

the change equation with two parts. First, the function G(f) gives the subset of terms in the power

set of f that have been estimated to impact the formation of the transient. As of the writing of

this article, G(f) is the following:

G(f) =[1 ae ap aa be bp ba oe op oa aebe aeop apbp aaba

beoe beop bpoe bpop aebeoe aebeop] (2)

Second, for each element of G(f), we can define a set of coefficients, M , that describes the extent to

which the element modifies the value of each element in f . The matrix M is thus a two-dimensional

matrix with |f | rows and |G(f)| columns. The Mi,j element of M describes the extent to which

the jth coefficient of G(f) impacts the ith element of the transient.

The deflection of a particular event is a measure of the squared Euclidean difference between

the post-event transients and fundamental impressions. Because the pre-event impression is set

equal to the fundamental, we can equivalently define deflection as the squared Euclidean difference

between the pre and post-event transient impressions, as shown in Equation (3). In the equation

Mi∗ is the ith row of M .

Deflection =

9∑
i

(fi −MT
i∗G(f))2 (3)

It is important to note that because of the way the deflection equation is constructed, one can

reassemble it as a quadratic function of the form c0f
2
i + c1fi + c2 for any single element of f , fi,

if all other elements of f are considered to be constant. That is, if we were to actually replace

Mi∗ and G(f) with the regression model provided by ACT scholars, perform the multiplication

of the squared term, all addition and all simplifications possible, we would end up with a long

expression consisting of linear and quadratic combinations of all elements in f , plus a constant

(e.g., 1.3 + .5f1f
2
2 + .3f25 + ...).

If we treat all fj , j 6= i as known (as constants), then this massive quadratic equation will

reduce to the three term quadratic equation above with constants c0, c1 and c2. The values of c0,

c1 and c2 can be computed using the equations above and will consist of nonlinear combinations of

constants, including those elements of f , fj,j 6=i, that we assume constant. This observation is vital

in developing the Gibbs sampling equations for our model5.

5Note that while one could, quite simply, provide a regression model in which either the constant c0 or c1 is zero,

in practice such an occurrence is unlikely and in any case it can be shown via simple algebra that the equations used

here do not fit this case.
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2.1.3 Bayesian Affect Control Theory

Recently, Hoey and colleagues (Hoey et al., 2013a; Hoey, Schröder, & Alhothali, 2013b) converted

aspects of ACT’s mathematical model into one piece of a Partially Observable Markov decision

process (POMDP). Their POMDP is used to train an intelligent tutoring tool, and thus their efforts

are in a distinctly different vein. However, insights from the their efforts are directly relevant to our

model. Most important, perhaps, is Hoey et. al’s observation that one can exponentiate and negate

the deflection equation to produce a true probability distribution. In doing so, a rearranging of the

terms produces a multivariate normal distribution that makes Bayesian analysis feasible. While our

model uses substantially different techniques, the relationship between the exponentiated form of

the deflection equation and the normal distribution also plays an important role in the development

of the model.

2.2 Other related approaches

The extraction of the sentimental meaning of different terms in a text is far from novel in the

NLP community. Such efforts typically fall under the domain of sentiment analysis, defined as the

extraction of emotional content from text, often in combination with other forms of data suitable for

machine learning approaches. For a slightly dated but still very much relevant review of sentiment

analysis techniques, we refer the reader to (Pang & Lee, 2008). In general, our approach differs in

two important ways from previous sentiment mining approaches. First, there exists only a single

other previous work that uses data made available by ACT researchers. Ahothali and Hoey (2015)

apply an ACT-based model to social events extracted from news headlines. Their work differs in

that they use only news headlines, use manual coding (via Mechanical Turk) to extract social event

structure from text rather than the semi-automated approach defined here, and only extract a single

EPA profile for each entity. Second, and perhaps most importantly, our approach moves beyond

sentiment analysis tools that extract sentiment along single, evaluative dimension. Instead, we

place identities and behaviors into a more empirically consistent three-dimensional latent, affective

space. Beyond the work of Ahothali and Hoey (2015), few efforts have been made in this direction

in the NLP community.

While unrelated to sentiment analysis, our use of the affective latent space draws comparisons

to techniques like Latent Semantic Analysis (LSA) (Deerwester, Dumais, Landauer, Furnas, &

Harshman, 1990) and more recent approaches involving neural networks and “deep learning” (Lee,

Grosse, Ranganath, & Ng, 2009) that place words into latent spaces that are representative of their

meaning. Such approaches have been shown to be useful in both understanding meaning and in

prediction problems. For example, recent convolutional neural network models have been developed

that are able to solve analogies via simple algebra and distance models (Mikolov, Yih, & Zweig,

2013), not unlike the methods for finding optimal behaviors for social events in ACT that we will

describe below.

Finally, existing NLP tools, perhaps most notably Latent Dirichlet Allocation (LDA) (Blei, Ng,

& Jordan, 2003), have formalized many of the difficulties involved with Bayesian analysis of text
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data and have shown the effectiveness of considering terms as belonging to many latent “topics”

(or in our case, entities having multiple latent “senses”). The most relevant of these models is the

work of O’Connor et al. (2013), who infer classes of behaviors that countries enact on each other

over time. The authors use dependency parsing to extract events in which one country enacts a

behavior on another. They then develop a model that jointly infers types of behaviors between

countries and the extent to which the relationship between different countries is described by these

classes of behaviors.

3 Extracting Social Events from Text

Table 1: Countries of interest to the present work and number of newspaper articles relevant to them

Country Num. Articles Country Num. Articles

Algeria 11,059 Bahrain 21,314

Egypt 111,779 Iran 138,343

Iraq 101,147 Jordan 23,060

Kuwait 14,559 Lebanon 35,071

Libya 92,101 Morocco 27,153

Oman 8,581 Saudi Arabia 59,406

Syria 96,893 Tunisia 28,485

United Arab Emirates 73,029 Yemen 21,146

In order to use Affect Control Theory, we require a set of social events engaged in by entities

of interest. In the present work, we are interested in understanding news media perceptions of the

Arab Spring. In order to extract the requisite social events, we rely on a corpus of approximately

600K newspaper articles that we have collected. This large news corpus provides valuable infor-

mation about numerous social events throughout the Arab Spring, and analyses of these texts can

provide insight into behavior Joseph, Carley, Filonuk, Morgan, and Pfeffer (2014). The newspaper

articles were extracted from LexisNexis Academic’s corpus of “Major World Publications”6 and

were written between July 2010 and December 2012. We only extract articles written in English,

and only consider articles that LexisNexis has indexed using its proprietary algorithms as being

relevant to one or more of sixteen countries involved, either directly or tangentially, in the Arab

Spring. These countries, and the number of articles relevant to them, are listed in Table 17.

Extraction of social events from text requires extracting information about “who did what to

whom”. While we expect such social events to be rampant in the text, the extraction of this

type of information is an area of on-going research in the NLP community and has been studied

within the subdomains of both dependency parsing (Kübler et al., 2009) and semantic role labeling

6http://www.lexisnexis.com/hottopics/lnacademic/?verb=sf&sfi=AC00NBGenSrch&csi=237924
7Note that a news article may be indexed by LexisNexis as being relevant to more than one country; hence the

values in Table 1 sum to a value greater than 600,000
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(Carreras & Màrquez, 2005). Here, we use dependency parsing, as methodologies for dependency

parsing are more readily available for the type of data we use. Specifically, we use the Stanford

CoreNLP pipeline (Manning et al., 2014) to perform dependency parsing on our full set of data

with the recently implemented, state-of the art model-based parser (Zhu, Zhang, Chen, Zhang, &

Zhu, 2013). For more details on the general techniques and ideas behind dependency parsing, we

refer the reader to (De Marneffe & Manning, 2008; Kübler et al., 2009). For an online example of

dependency parsing, visit http://nlp.stanford.edu:8080/parser/index.jsp.

Quite simply, dependency parsing uses a variety of statistical techniques to extract from each

sentence in our corpus the ways in which different terms are linguistically dependent on others. We

run the dependency parser on all sentences from our corpus and extract all relations where we find

both the subject and direct object of a verb. The subject, verb and object of the dependency parse

are lemmatized8 to their normalized form and then output for further processing.

This procedure allows us to extract social events from the text. For example, from the sentence

“The teacher advised the student” the dependency parser (and post-parsing lemmatization) would

extract the relationship “teacher advise student”. Naturally, this process also extracts a host of

noun-verb-noun relationships that are not social events, i.e. cases where either of the nouns are

clearly not identities (“sanction help talk”), cases where the behavior is ambiguous (“husband say

wife”) and cases where the dependency parser appears to simply get confused (“issue hold talk”).

To filter these events out from the data as best we can, we use a two-pass approach to cleaning.

The first pass engages a variety of heuristics to remove highly irrelevant results. We then use a

second, manual pass to further increase the relevancy of our data.

We use five heuristics in our first pass cleaning over the data. First, we ignore any events

which do not contain at least one ACT identity or behavior. Though this is not required for our

model, we find this serves to remove a host of uninteresting dependency parsing outputs. Second,

we remove from the data any events appearing in highly similar sentences on the same day. This

acts as a crude form of shingling (Rajaraman & Ullman, 2011), which helps in ensuring that we

do not double count events from articles that contain nearly the same exact content reiterated by

different outlets (O’Connor et al., 2013). Two sentences are similar if the noun-verb-noun relation

extracted, along with any terms dependent on these three words (e.g. adjectives) are the exact

same. Third, we ignore any relations where the subject or object is a pronoun. Such relations may

be useable in the future if co-reference resolution is performed (Soon, Ng, & Lim, 2001), but due to

the computational complexity of doing so and the relatively high level of noise this process tends

to induce, we do not use it at this point. Fourth, we ignore any results in which we observe the

term “not” before the verb of the dependency parse, as we were unsure how to use ACT equations

under this negation. Finally, we ignore any behaviors and identities that appear less than 25 times

in our dataset, recursively removing events until all terms satisfy this requirement.

8Lemmatization is a process by which words are normalized in a deterministic fashion to facilitate analysis.

Lemmatization includes stemming (e.g. changing “walking” to “walk” but also other steps, like synonym replacement,

(e.g. replacing “better” with “good”). It is standard practice in the NLP literature to perform lemmatization before

analysis
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After this first pass of cleaning, we were left with approximately 5300 possible identities, 1300

possible behaviors and approximately 1.3M (of 1.7M total) social events. At this point, it was

feasible to manually validate that all remaining entities extracted from the dependency parsing

were indeed things we considered to be identities or behaviors, even if we could not consider the

feasibility of each event individually. While future work may allow for more noise in the data, the

present work was chiefly focused on model development, and thus we err on the side of caution in

deciding whether to include or exclude entities. For identities, we included only terms in the current

ACT dictionaries, terms representing national identities and/or governments (including national

leaders), well-known social groups and general identities that were deemed to be interesting by the

majority of co-authors (e.g. “protestor”). We only included behaviors that were unambiguous in

the action being taken and that could feasibly be expected to relate two identities. For example,

we chose not to use the term “have” as a behavior, as it is unintuitive to consider one identity

“having” another.

After finishing this processing, we again ensured that all identities and behaviors in our data

occur at least 25 times in the cleaned dataset to ensure there was enough data to provide a reason-

able estimate of their EPA profile. The final dataset we use has 102 identities, 87 behaviors and

10,485 social events.

4 Model Description

Figure 1 depicts the probabilistic graphical model used in the present work using standard plate

notation9. In this section, we introduce the model in accordance with its generative structure,

working roughly from the top of Figure 1 to the bottom. Although the model is visually complex,

we will show here that it is comprised of two rather straightforward pieces. First, the variables

θ, φ,Q and their predecessors define a simple language model (Charniak, 1996), or a model which

assigns probabilities to a sequence of words based on their distribution within a corpora of text. This

language model governs the probabilities of drawing a particular actor/behavior/object combination

for a social event. Second, the variables µ0, σ
2
0, π, µa, µb, µo, d, z and their predecessors define a sort

of Gaussian mixture model (GMM) that uses ACT, which we will refer to as ACT-GMM. All

variables we use, along with a brief description, are listed in Table 2. In reviewing the model,

the reader may find Table 2 helpful in that it provides summaries of the mathematical constructs

described here.

The model takes three forms of data as input. First, it accepts the set of social events N

extracted from the dependency parser. Each social event in N consists of an actor an, a behavior

bn and an object on. For ease of notation, our discussion below assumes the n subscript on a, b

and o is implicit. Second, model hyperparameters m0 can be set to incorporate EPA profiles of

entities appearing in N that also appear in the ACT dictionaries. Finally, the model accepts a

change equation, used to calculate deflection. This equation is considered to be static and thus is

9For an introduction to plate notation, and to Bayesian modeling more generally, we refer the reader to the general

texts from Gelman et al. (2013). We will here, out of necessity, assume some familiarity with such models
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Figure 1: A depiction of the probabilistic graphical model used in the present work using standard plate

notation

not updated in any fashion during model inference, nor is it explicitly referenced in Figure 1. The

change equation we use is an average of the most recent female and male change equations as given

by Interact as of December 30th, 2014.

4.1 Language model component

All entities are assumed to be drawn from a simple language model. The simplest feasible model

would be to allow a, b and o to each be drawn from their own Categorical distributions, each of

which has a Dirichlet prior. The use of a Dirichlet prior to “smooth” a multinomial or Categorical

distribution is known as Laplace smoothing (Zhai & Lafferty, 2001). However, such a model would

make poor use of both the data and the theory. With respect to the data, modeling the distributions

of actors and objects separately ignores the fact that both draw from a common distribution over

identities. Empirically, drawing from a single distribution over identities provides a significant

improvement in the model’s predictive capabilities. Additionally, ACT is often concerned with

12



Table 2: Variables used in the description of the model

Variable Description

n Each social event, n, consists of the triple < an, bn, on >

an, on, bn The actor, object and behavior for the nth social event, respectively

zan
, zbn , zon The latent sense in which an, bn or on is used

µzan ,epa
The current expected E,P, or A value epa for the latent sense zan

for actor an. Similar

entries exist for zbn , zon

dn
The difference between the actual deflection of the nth social event and the deflection

expected from the fundamental

µ0,ze,epa , σ
2
0,ze,epa

The prior expected mean and variance for the EPA value epa for latent sense ze of

entity e.

m0,ze,epa, k0,ze,epa Hyperparameters for µ0,ze,epa

v0,ze,epa, s0,ze,epa Hyperparameters for σ2
0,ze,epa

πe Distribution governing the likelihood of the different latent senses for entity e

p Hyperparameter for π

α, ψ
Hyperparameters governing the prior likelihood of any identity or behavior, respec-

tively

θ, φ The estimated likelihood of any identity or behavior, respectively

I,B The set of all identities or behaviors existent in all events in N , respectively

L The assumed number of latent senses per identity and behavior

β The expected scale of the distribution around d

Q The parameter used to determine the likelihood of a behavior for a particular event

q Dirichlet smoothing parameter for the conditional distributions p(b|o) and p(b|a)

the behavior that connects two identities, and thus it makes more sense in the generative model

to include an assumption that the behavior for an event is reliant on the actor and object. This

assumption should exist in the language model, we believe, above and beyond similar assumptions

wired into the ACT-GMM portion of the model.

In the language model, actors and objects are thus both assumed to be drawn from the same

Categorical distribution θ, which defines a likelihood of the identity occurring in any given social

event. Given an actor and an object, we then draw a behavior to connect them. We assume that

the most likely behavior for this event will be influenced by the a and o selected, as well as the

overall distribution of behaviors. This overall distribution of behaviors is encoded in the Categorical

variable φ. The auxiliary variable Q, which is also Categorical, combines information in φ with

Laplace smoothed estimates on the likelihood of b given a and o. We describe Q in more detail in

the following section. Mathematically, these relationships can be expressed by the following:
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φ ∼ Dirichlet(ψ)

θ ∼ Dirichlet(α)

a ∼ Categorical(θ)

o ∼ Categorical(θ)

b ∼ Categorical(Q)

4.2 ACT-GMM

Each identity and behavior in the dataset is assumed to have L possible EPA profiles in which it

might be used within N , where L is set by the researcher and can be tuned empirically. Allowing

for multiple EPA profiles for the same term is an important piece of our model, as the newspaper

data we use is extracted from a variety of English-speaking cultures. Each culture may associate a

unique EPA profile to a particular entity. We will refer to the different EPA profiles for a particular

entity as its different latent senses in the sections below. The Categorical variable π governs the

frequency with which each latent sense is expected to be used for each entity; p is a hyperparameter

for π.

Each latent sense for each entity is associated with three values in µ0 and σ20; one for each

dimension of the EPA profile for that latent sense for that entity. Here, and throughout the article,

the 0 subscripts (e.g. on µ0) are used to represent a variable that is a prior or a hyperparameter to

the Bayesian network model. A particular entry in the vector µ0, which we will refer to as µ0,zib,epa

(ib stands for “identity or behavior”) exists at the 3∗ib∗z+epa location in µ0. Here, zib is the index

of the zibth latent sense for entity ib and epa is the index of the sentiment dimension. A similar

indexing scheme is used for σ20. Combined, these six mean and variance parameters determine the

mean and variance of the three dimensions of the EPA profile for this particular latent sense zib of

the entity ib.

All values in µ0 are assumed to be drawn from a normal distribution governed by m0, k0 and σ20,

while σ20 is assumed to be drawn from an Inverse Chi-squared distribution with parameters v0, s0. A

key insight that is leveraged in our approach is that the values of m0, as priors on the EPA profiles,

can be used to set, or to “control”, the EPA profiles for entities in the ACT dictionaries. For

example, we might set the (static) value of m0,1teacher,e = 0.72 to help ensure that the evaluative

dimension of the first latent sense for the identity teacher is biased towards the “correct” value

implied by the ACT dictionaries. More formally, we assume that the joint prior density for µ0

and σ20 follows a Normal Inverse Chi-squared distribution, which allows us to infer both values

using Bayesian inference. This formulation is a common representation for Bayesian models where

one wishes to infer both the standard deviation and the mean for a Normal distribution; as such

we defer the reader to (Gelman et al., 2013, pp.76-68) for further details. Mathematically, our

assumptions can be expressed as follows:
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π ∼ Dirichlet(p)

µ0 ∼ N(m0,
σ20
k0

)

σ20 ∼ Inv−χ2(v0, s0)

For each social event, each actor, behavior and object is associated with a particular latent

sense z of its corresponding entity. Once za, zb and zo are drawn, we can obtain the entities’ EPA

profiles µa, µb, and µo (respectively) by sampling an EPA profile from the Normal distributions

governed by the relevant entries in µ0 and σ20. Once these values have been drawn, we can obtain

a deflection score for that event.

One could define the deflection for an event as a deterministic function. To do so, the values

of µa, µb and µo would be combined to form the pre-event impression f . We could then provide a

deterministic deflection score for the event by substituting these values into Equation (3). Instead,

however, we treat deflection as a stochastic process whose mean is this expected deflection but that

has some variance, β. We feel this assumption is more reasonable than the deterministic one in

our particular case, as it accounts for context of this particular social event beyond what we can

account for with our mixture model. For example, the lack of incorporation of information about

settings implies an inherent randomness in the deflection measured by our model, thus justifying

the assumption of stochasticity. The distribution of deflection is assumed to be Laplacian, which

makes model inference easier while still retaining the desired sociotheoretic meaning of deflection

as a distance metric. Mathematically, our assumptions can be stated as follows:

za ∼ Categorical(π) zb ∼ Categorical(π) zo ∼ Categorical(π)

µa ∼ N(µ0,za , σ
2
0,za) µb ∼ N(µ0,zb , σ

2
0,zb

) µo ∼ N(µ0,zo , σ
2
0,zo)

d ∼ Laplace(
9∑
i

(fi −MT
i∗G(f))2, β) where f = [µae , µap , µaa , µbe , µbp , µba , µoe , µop , µoa ]
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Algorithm 1: Model inference for ACT-GMM portion using Stochastic EM

1 Initialize all µ0, σ
2
0, π

2 for i = 0 to N ITERATIONS do

3 E step:

4 Sample all z using Gibbs sampling and Equation (7)

5 Sample all µ using Gibbs sampling and Equation (8)

6 M step:

7 Update all σ0 using MAP estimate of Equation (10)

8 Update all µ0 using Equation (12)

9 Update all π using Equation (13)

4.3 Summary

Having fully defined our model, a useful summarization can now be provided by giving the formal

generative process required by the model. To generate a new social event, the following process is

carried out:

1. Draw an actor and an object; a ∼ Cat(θ) o ∼ Cat(θ)

2. Draw a behavior; b ∼ Cat(Q)

3. Draw a latent sense for a, b and o; za ∼ Cat(πa) zb ∼ Cat(πb) zo ∼ Cat(πo)

4. Draw EPA profiles for a, b, and o

• µa,e ∼ N(µ0,za,e;σ
2
0,za,e) µa,p ∼ N(µ0,za,p;σ

2
0,za,p) µa,a ∼ N(µ0,za,a;σ

2
0,za,a)

• µb,e ∼ N(µ0,zb,e;σ
2
0,zb,e

) µb,p ∼ N(µ0,zb,p;σ
2
0,zb,p

) µb,a ∼ N(µ0,zb,a;σ
2
0,zb,a

)

• µo,e ∼ N(µ0,zo,e;σ
2
0,zo,e) µo,p ∼ N(µ0,zo,p;σ

2
0,zo,p) µo,a ∼ N(µ0,zo,a, σ

2
0,zo,a)

5. Draw a deflection score for the event

• d ∼ Laplace(
∑9

i (fi−MT
i∗G(f))2, β) where f = [µae , µap , µaa , µbe , µbp , µba , µoe , µop , µoa ]

The described process helps to explain how a new social event might be “generated” by the Bayesian

network model described here, but also provides insight into how the model determines the like-

lihood of an event it is given. The likelihood of a particular event is a function of likelihood of

the actor and object’s identities overall (1.), the “semantic likelihood” of the behavior given these

identities (2.), and the “affective likelihood” of the social event as a whole (3.-5.).

5 Model inference

Model inference is completed in two steps. First, we determine Maximum a posteriori (MAP) for the

parameters of the language model, as they are straightforward enough to determine in closed form.

16



Second, we use the Stochastic EM (Tregouet, Escolano, Tiret, Mallet, & Golmard, 2004) (Bishop

& others, 2006, p. 439) algorithm displayed in Algorithm 1 to draw inferences for parameters in

the GMM portion of the model. Note that Algorithm 1 references several equations that will be

introduced later in this section. In the Expectation (“E”) step, we use Gibbs sampling to draw

expected values for za, zb and zo and for µa, µb and µ0 for all social events. In the Maximization

(“M”) step, we then update σ0, µ0 and π with their MAP estimates. Note that we do not explicitly

sample d, as the value of this stochastic process is not of particular interest to us in the present

work.

Below, we first derive the MAP estimate for the language model. We then derive the Gibbs

sampling equations for all z and all µ and finally the MAP estimates for σ0, µ0 and π. In doing

so, we introduce three additional pieces of notation. First, let µ∗ represent all nine fundamental

values drawn for an event. Second, let µ∗/x represent µ∗ where all values of all elements are known

except for x. Finally, we define Ω as the set of all parameters, and Ω−x as the set of all parameters

besides x.

5.1 MAP estimates for language model

MAP estimation for the language model portion of the model is relatively straightforward. The

variables of interest are θ and Qn. The distribution for θ is given in Equation (4), where n(ai) is

a function that represents the number of times the identity i appeared as an actor in N and n(oi)

the number of times i appeared as an object. The Dirichlet distribution is a well-known conjugate

of the Categorical distribution, and we thus do not re-derive the posterior distribution here. Note,

however, that we follow the notational convenience of absorbing the minus one in the second line

of Equation 4 into the Dirichlet hyperparameter in all following statements about the posterior

distribution and MAP estimates of the Categorical distribution.

p(θ) = p(θ|α) ∗
|I|∏
i=1

p(ai|θ)p(bi|θ)

∝
|I|∏
i=1

θ
n(ai)+n(oi)+αi−1
i

∼ Dirichlet(n(ai) + n(oi) + αi) (4)

Given p(θ) is distributed as in Equation (4), the MAP estimate for the posterior distribution

of θ is given by Equation (5). The estimate is simply a normalized function of the number of times

an identity appears plus the “pseudo-counts” from the Dirichlet prior α.

θ̂ = arg maxθ p(θ) =
n(ai) + n(oi) + α∑
i∈I n(ai) + n(oi) + α

(5)

The MAP estimator for Q is given in Equation (6). Note that because Q depends on the actor

and objects for each event, there are actually |N | values of Q. We will discuss the derivation for a

particular entry ofQ, Qn here, as the derivation is the same for all events. The distributions p(bn|an)
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and p(bn|on) are Categorical distributions that give the conditional likelihood of the behavior bn

given an and on, respectively. To ensure that these values are never zero, we introduce a smoothing

parameter q resulting in the distributions p(bn|an, q) and p(bn|on, q), respectively. Introducing

the smoothing parameter q is equivalent to inserting an auxiliary variable for both p(bn|an) and

p(bn|on) and putting a Dirichlet prior over each with the hyperparameter q. As the introduction of

this variable would unnecessarily complicate notation, we do not use it here. The likelihood of any

particular behavior as derived from the MAP estimate is thus simply the product of three Laplace

smoothed Categorical variables, φ (smoothed by ψ), p(bn|an) and p(bn|on), both smoothed by the

constant q. The distribution of bn is thus Categorical with Q as the parameter.

Q̂n = arg maxQn p(Qn) = arg maxQn p(bn|an, q) ∗ p(bn|on, q) ∗ p(φ|ψ)

N∏
i

p(bn,i|φ)

=
n(bi|a) + q∑
bi∈B n(bi|a) + q

∗ n(bi|o) + q∑
bi∈B n(bi|o) + q

∗ n(bi) + ψ∑
bi∈B n(bi) + ψ

(6)

5.2 “E” Step for ACT-GMM

For each document, we must draw za, zb and zo and all nine values for the fundamental, three each

for µa,µb and µo µ. Because the sampling proceedure is analogous for all entities in a particular

event and are the same for each event, we will focus here only on the agent for one specific event n.

5.2.1 Sampling z

The conditional probability that the variable zan is equal to the latent sense t is specified in

Equation (7):

p(z = t|Ω−z) = p(z = t|π)

[e,p,a]∏
i

p(µai |µ0,t,i, σ20,t,i) (7)

Sampling from this conditional distribution is straightforward, as both the first and second

terms of the probability function are easy to compute. The first term is simply the likelihood of

latent sense t as given by the current value of π. The second term can be obtained by evaluating

the likelihood of µa,e,µa,p and µa,a relative to their expected distribution given the current state of

µ0 and σ0. These three values are multiplied together to generate a likelihood for µa as a whole.

Multiplying the result of this process by the first piece of the probability function, we can then

normalize over all possible values of z and draw a new latent sense for the actor in this event from

this Categorical distribution.
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5.2.2 Sampling µ

The conditional distribution of µzan ,e, the value for the evaluative dimension of the actor’s EPA

profile for event n and latent sense zan , is given below in Equation (8). Representation of the

potency and activity dimensions are analogous, so we focus only on the evaluative dimension here.

Also, we shorten zan to z ease notation.

p(µz,e|Ω−µz,e) = p(µz,e|µ0,z,e, σ20,z,e)p(d|µ∗/µz,e;β) (8)

To infer the conditional distribution of µz,e, Equation (8) shows we simply need to understand

the prior distribution of µz,e and the distribution of d given all values except that of µ0,z,e. From

the section above, we know that p(µz,e|µ0,z,e, σ20,z,e) ∼ N(µ0,z,e, σ
2
0,z,e). Thus, we are left with inter-

preting the distribution of p(d|µ∗/µz,e;β). It can be shown, rather unexpectedly that evaluating the

distribution of d given all values except µz,e results in a distribution which is normally distributed

on µz,e with a known mean and variance.

The proof is shown below; the derivation follows from the fact stated in Section 2.1.2 that the

deflection score with one unknown variable is a quadratic in that variable. By completing the

square and dropping constant terms that do not inform the conditional distribution for µz,e, we are

left with a function that defines a Normal distribution on µz,e with the given parameters.

p(d|µ∗/µz,e;β) ∝ exp(−
|d−

∑9
i (fi −MG(fi))

2|
β

)

= exp(−
|d− (c0µ

2
z,e + c1µz,e + c2)|

β
)

∝ exp(−
|(c0µ2z,e + c1µz,e)|

β
)

= exp(−
|c0|(µz,e + c1

2c0
)2

β
)

= exp(−
(µz,e + c1

2c0
)2

β
|c0|

)

∝ Nµz,e(− c1
2c0

,
β

2|c0|
) (9)

There are two important points to note in the derivation shown in Equation (9). First, the result

relies on the fact that there are no social events in which the same identity appears more than once.

If this were to be the case, the equation would no longer be quadratic in µz,e. Second, and perhaps

more importantly, is that the resulting distribution is centered at the value of µz,e which minimizes

the deflection of the social event given all other fundamental meanings as estimated by Maximum

Likelihood Estimation (Heise, 2007, ch. 8). Though this result fits our intuition, we do not believe

that this was an obvious outcome given the initial distribution.

Thus, when updating µz,e we are drawing from a product of two normal distributions. One of

these distributions is centered at the current expected value of µz,e as given by µ0,z,e and σ20,z,e.
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The second distribution, usefully, is centered at the value which will minimize deflection for the

current event given all other values in the pre-event fundamental vector. It is well-known that the

product of two normals is proportional to a new normal distribution10, and thus we can sample

a new value for µz,e from this new distribution, which has a mean of
µ0,z,e∗ β

2|c0|
− c1

2c0
∗σ2

0,z,e

σ2
0,z,e∗

β
2|c0|

and a

variance of
σ2
0,z,e∗

β
2|c0|

σ2
0,z,e+

β
2|c0|

. From this sampling distribution, it is clear that the new value is informed

by both the prior information from µ0 and σ20 and information from the current event.

5.3 “M” Step for ACT-GMM

5.3.1 MAP estimates for µ0, σ
2
0

Because all updates in µ0 and σ20 are analogous, we will consider the conditional distribution of

the evaluative dimension of a particular latent sense zi of a single identity i. To ease notation, we

will refer to the relevant entry in µ0, which is µ0,zi,e, as simply µ0, and the relevant entry in σ20,

which is σ20,zi,e, as simply σ20. A similar shortening of notation will be applied to the four relevant

hyperparameters m0,zi,e, k0,zi,e, s0,zi,e and v0,zi,e. Let us also define the set S, which consists of all

events in which the latent sense zi of the identity i is used in the current iteration of the inference

algorithm. Formally, S = {n ∈ N : (an = i& zan = zi) | (on = i& zon = zi)}. The variable S is

introduced as we need not worry about events outside of it; they will be irrelevant in evaluating

the distribution of µ0,zi,e.

The derivation for the MAP estimation of σ20 can be easily obtained from its well-known posterior

distribution, shown in Equation (10). In Equation (10), s̄2 is the sample variance deviation (that

is,
∑S

n(µn − µ0)2) and µ̄ =
∑S
n µn
|S| .

p(σ20|Ω−σ2
0
) = p(σ20|v0, s0)

S∏
n

p(µn|µ0, σ20)

= Inv−χ2(v0 + |S|, v0s0 + (|S| − 1) ∗ s̄2 +
k0 ∗ |S|
k0 + |S|

(µ̄− µ0)2) (10)

The expected value of this posterior distribution is then the MAP estimate of Equation (10).

The MAP estimate is xy
x−2 , where x is the location (first parameter) of the Inv−χ2 in Equation (10)

and y is the scale (second parameter) of this distribution.

The distribution of µ0 also consists of two parts, a straightforward prior and a posterior com-

ponent that is the product across the events in S. This is shown in Equation (11):

p(µ0|Ωold) = p(µ0|m0, σ
2
0, k0)

S∏
n

p(µn|µ0, σ20) (11)

The MAP estimate of a normal distribution in this form is well known, so we simply provide

the resulting estimate in Equation (12). Note that σ20, as used in Equation (12), represents the

“new” version of σ20 from Equation (10).

10for a formal proof, see (Bromiley, 2013)
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Table 3: Model initialization details

Variable Initialization value/method

β, α, ψ, q 1

v0 2

s0 .1

p 3

m0 value from ACT dictionary, random otherwise

k0 50 if from ACT dictionary, 10 or 1 otherwise. See text

L varied for parameter tuning

π, µ0, σ
2
0 drawn from Prior

µ̂0 =

k0
σ2
0
m0 + |S|

σ2
0
µ̄n

k0
σ2
0

+ |S|
σ2
0

(12)

5.3.2 MAP estimate of π

The MAP estimate of π reduces to a new Categorical distribution where the likelihood of each latent

sense is the number of times this latent sense is “used” in the E step plus the “pseudo-counts” from

the Dirichlet prior p. The derivation of this MAP estimate is, as we have mentioned, straightforward

given previous, well-known results in the literature. Equation (13) gives the distribution of the new

value of π.

π̂ =
n(zt) + pt∑
s(n(zs) + ps)

(13)

5.4 Initializing the Model

All that remains to be introduced with respect to model inference is how parameters are initialized.

Table 3 details the initialization of all parameters aside from Q, d, z and µ. An initialization of Q

is unnecessary, as we simply compute it’s MAP estimate once. The value of d is not of interest

and does not affect the estimation of other parameters, thus initialization is unnecessary. The

parameters z and µ are sampled before they are used, so also need not be initialized. In this

section, beginning with the hyperparameters, we provide more details about the meaning of the

statements in Table 3.

Hyperparameter tuning can have important implications on model performance, perhaps espe-

cially so in cases where we are dealing with language data (Wallach, Mimno, & McCallum, 2009).

However, hyperparameters also reflect one’s prior expectations, and thus we attempt here to balance

a search for optimal parameters between our prior expectations and model performance. Further,

given the number of hyperparameters for the model, we chose to only use heuristic searches to

explore the parameter space. Thus, we set β, q, p, α, ψ, s0 and v0 to specific values based on the
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parameter settings which maximized performance on a single fold of the data and set m0 and k0

via a combination of informal model testing and heuristic methods.

For β, we assume that a reasonable prior for the variance of the deflection score around its

ACT-implied value is 1. The variable q is set to 1, as testing on development data using a variety

of language models suggested that this minimal pseudo-count led to the strongest model. We also

set α and ψ to 1 based solely on results from testing, as these values performed better than other

tested values of 3, 50 and 1000. We similarly set s0 to .1 as opposed to other tested values of .5

and 1, and p to 3 as opposed to other tested values of 50, 400 and 1000. Finally, we set v0, which

can be thought of as our confidence in the prior s0, to 2, which reflects a low level of confidence

in the value of s0. Setting the value to 1 caused high instability in the MAP estimates for σ20; the

value of 2 was the smallest at which they showed stability.

We use the hyperparameter m0 to encode our prior belief of the EPA profile for each latent sense

of each entity. We make the assumption that one of the latent senses is drawn from an American

cultural perspective, as many of the media outlets within our dataset are based in America. Hence,

we use data from the ACT website that is the best representation avaiable of this perspective. This

data comes from a dictionary of 500 identities and 500 behaviors coded with EPA profiles from

surveys in 2002-3 of undergraduate students at a large, public, American institution (Francis &

Heise, 2006). These data have been used in a variety of ACT studies since it was introduced, and

are used as the default values for the computer program Interact (Heise, 2010a), from which much

ACT research is derived.

For entities ib that are in both the survey data and our set of social events, we initialize values

of m0 for its zeroth sense (i.e. m0,0ib,e,m0,0ib,p,m0,0ib,a) to the values from the survey data. We then

heuristically set the rest of the values of m0 using an iterative algorithm for the zeroth sense of all

entities that are not in the ACT dictionary. The algorithm takes as input the set of already known

values in m0 and uses the fact that the standard mathematical model of ACT can be used to solve

for the EPA profile of the third entity in an event if the EPA profiles of the other two entities are

already known (Heise, 2007, ch. 8). On the first round of the iterative algorithm, we extract all

events where values for m0 for two of the three entities are known from the ACT dictionary. We

then compute the optimal EPA profile for the third entity in each of these events. We then take

the average EPA profile for each entity we can obtain at least one EPA profile from in this process

and use these values to initialize m0,0ib,e,m0,0ib,p and m0,0ib,a for each of these entities.

Once we have set these values, we can iterate through N again, treating both the original m0

values from the ACT dictionary and the new values from the first iteration of the algorithm as

known. This iterative process continues until we can initialize m0 for all entities. If we reach a

point where no new information can be gleaned from the process above, we select one random

event and set the EPA profile of one of the entities using uniform random values in the range

[−4.3, 4.3]. This allows the algorithm to continue learning. In practice, the algorithm finishes in

around two iterations, only having to set a random score zero or one times for entities that appear

in the training data. For terms appearing in held-out test data but not in the training data, the

appropriate entries for the zeroth sense in m0 are initialized to uniform random values.
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Table 4: Predictive distributions for the four baseline models and the full model

unigram p(b|a, o) = p(b, s = 1)

bigram p(b|a, o) = p(b, s = 1)p(b|o, s = 1)p(b|a, s = 1)

ACTonly p(b|a, o) = p(b|φ, a, o, q)p(b|a, o, d = 0,m0)

noACT p(b|a, o) = p(b|φ, a, o, q)IEz,µ[p(z|π)p(d = 0|µ)p(µ|µ0, σ20)]

fullModel p(b|a, o) = p(b|φ, a, o, q)IEz,µ[p(z|π)p(d = 0|µ)p(µ|µ0, σ20)]

The zeroth sense for each entity thus represents some instantiation, real or heuristically defined,

of the EPA value of that entity from an American cultural standpoint. Values in m0 for all other

latent senses of all entities (including those found in the ACT dictionary) are set using uniform

random values on the interval [−4.3, 4.3]. While future work may attempt to be smarter in how

these parameters are set, we currently use random values to insinuate no prior knowledge of the

EPA profiles of other cultural groups whose perceptions may exist in the data. This lack of prior

knowledge is reiterated with the initialization of k0, which can be thought of as the number of

observations that we associate with m0 as a prior for µ0. For the zeroth latent sense for entities

in the ACT dictionary, we set k0 to 50 (the number of respondents in the survey data). For the

zeroth latent sense of entities initialized in the iterative algorithm, we set k0 to 10. For all other

latent senses of all entities, k0 = 1.

Once we have initialized all hyperparameters, all that remains is to initialize are π, µ0 and σ20.

We do so by drawing π, µ0 and σ20 from their respective prior distributions. This completes model

initialization.

6 Approach to Model Evaluation

The model we present is a combination of three well-established methodological approaches- lan-

guage modeling, Gaussian mixture models and ACT. While we have confidence that each component

can extract useful information from the data, our extensions of current ACT methodology and the

novel way in which we combine techniques requires a careful study of the extent to which our

efforts produce parameter estimates that are truly representative of information within the data.

To evaluate the quality of the estimates generated by our model, we use 10-fold cross-validation.

In k-fold cross validation, the data is split into k “folds”. We use k − 1 folds as “training data” to

train the model and carry out a prediction task on the “left out” test data. This process is repeated

k times, leaving out a different chunk of the data, and then results on the prediction task across all

folds are averaged. Here, we use perhaps the most common prediction task in the ACT literature,

that of predicting the behavior between an actor and an object. That is, for a given left out event

n, we give the trained model the actor and object in n and then attempt to predict the behavior.

In establishing the quality of our model’s predictions, we can have more confidence that param-

eter estimates accurately represent processes within the social event data. Importantly, such an

understanding requires some baseline for comparison. The four baseline models we compare our full
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model’s predictions to range from simple language models to more complex structural ablations of

our full model. While only some of these models can actually help to infer EPA profiles of entities,

they are important in giving us a sense of how “easy” the prediction task we are addressing is.

When a simple baseline can predict the data perfectly, a complex model like the one we propose is

more likely to learn patterns in the data that are largely noise, and thus post-hoc interpretations

of parameter estimates may suffer.

To evaluate the success of each model on the prediction task, we compute the log perplexity

of the model in determining the correct behavior across all test events. Log perplexity, or simply

perplexity as it is often written, a measure of accuracy typically used in explorations of the predictive

abilities of NLP models. This value is defined in Equation (14) below. In the equation, let TD be

the set of held out data used for testing for a single fold. The log perplexity, averaged across all test

events in all folds, gives us a sense as to how much weight in the model’s predictive distribution that

the model places on the correct behavior. The value 2log(perpl(TD)) can be thought of as the number

of behaviors the model feels are equally as likely as the true answer. So, if log(perpl(TD)) = 1, the

model would, on average, be “flipping a coin” between the correct answer and one other answer. If

log(perpl(TD)) = 4, the model would be rolling a 16-sided die. Note that the metric is a measure of

the extent to which a particular model is “confused” by the data, and thus a lower score represents

a better model.

log(perpl(TD)) =
−
∑

n∈TD log(p(bn|an, on))

|TD|
(14)

All models we test and the predictive distributions they use to determine the likelihood of

each behavior for a given test event are shown in Table 4. The first two models are simple,

Laplace smoothed language models with a smoothing parameter s = 1. The first predicts the

likelihood of a behavior by simply determining the likelihood of the single-word behavior label, or

the behavior unigram, p(b, s = 1). We call this model the unigram model. The second model

uses the conditional likelihood of the behavior given the actor and the object independently, as

well as the likelihood of the behavior itself. This is exactly the language model used in our full

Bayesian model. Drawing from the language modeling literature, this model is termed the bigram

model, meaning that we draw information for the behavior from its distribution, its distribution

conditioned on the actor and its distribution conditioned on the object.

Combined, these two baselines show how well events can be predicted by considering only

the semantic relationships between identities and behaviors. Note that this semantic information,

particularly in the bigram model, will implicitly capture a significant amount of affective meaning

as well - just because we are not explicitly modeling affecting meaning does not mean it isn’t

capture in semantic relationships within the text. We should therefore expect that these semantic

models, which derive likelihoods from only connections between words, are strong predictive models.

Adding in the ACT component of the model may or may not help in a predictive sense, but will

serve the vital purpose of helping us to understand why these semantic relationships are occurring.

The third baseline we use removes the GMM portion of the full model, replacing it with what is
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essentially the pure prediction model of current ACT methodologies. In this ACTOnly model, we

use the values ofm0 initialized by the iterative algorithm described above to determine the sentiment

for each entity. These values are therefore only roughly informed by the data, capturing only the

heuristic information from the initialization algorithm. The ACTOnly model then uses these

heuristically set EPA profiles in combination with the language model and the base mathematics of

ACT to make predictions, no further statistical optimization is performed. Under the assumption

that the actual deflection of each social event is zero, i.e. d = 0∀n, and that β = 1, the prediction

reduces to a form of the probability model for deflection related to that proposed by Hoey et al.

(2013a), as shown in Equation (15).

p(b|a, o) = p(b|φ, a, o, q) ∗ p(b|a, o;m0, d = 0, β = 1)

= p(b|φ, a, o, q) ∗ exp(
9∑
i

(fi −MG(fi))
2)

Where f = [m0,ae m0,ap m0,aa m0,be m0,bp m0,ba m0,oe m0,op m0,oa ] (15)

The final baseline we use is one that effectively removes ACT from the full model by randomizing

the change equation matrix and removing any information from the ACT dictionaries in the priors.

This model is labeled the noACT model in our results. While we expect performance of this model

to be comparable to the full model, it loses a significant amount of value in qualitative analysis

of results. Finally, we of course train our full model. Note that we run both of these models

assuming a variety of values for L in order to understand how they perform with different numbers

of assumed latent senses.

For both the noACT and full models, we run Algorithm 1 for 200 iterations. Parameter

estimates used in the prediction task are extracted from the final iteration of the algorithm. Once

parameter estimates have been obtained, we also must account for the fact that in both models,

the likelihood of a particular behavior for a test event is determined by averaging over all possible

values of za, zb and zo and all values of µa, µb and µo. That is, we must compute IEz,µ[p(d =

0|µ)p(µ|µ0,z, σ20,z)p(z|π)], which when expanded becomes
∑

z

∫
µ p(d = 0|µ)p(µ|µ0,z, σ20,z)p(z|π).

Note that we here condense all z and µ values for the actor, behavior and object into a single

term to simplify notation.

We choose to estimate this expectation using Gibbs sampling. To do so, we can simply draw

za, zb and zo and then µa, µb and µo. After making |S| such draws and computing the value of ps(d =

0|µs) for each draw s, we then can get an estimate of the likelihood of any actor/behavior/object

combination. Formally, we use the fact that IEz,µ[p(d = 0|µ)p(µ|µ0,z, σ20,z)p(z|π)] ≈
∑|S|
s ps(d=0|µs)
|S| .

We use 50 Gibbs samples each time we compute the expectation.
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Figure 2: Average Perplexity for the four baseline models and the full model for varying numbers of topics.

Where models do not use topics, we present two bands, the top and bottom of the 95% bootstrap CIs. For

the full and noACT models, 95% bootstrap CIs are also shown for the different values of L at which the

models were trained.

7 Results

7.1 Prediction Task

Figure 2 displays results for log perplexity (recall, the equation for log perplexity was given in

Equation (14)) for the four baseline models we used, as well as the full model. On the y-axis,

the average perplexity across folds is given. Note that this value is only computed across nine of

the ten folds; we ignore results from the fold we use to determine hyperparameter values. The

x-axis represents the numbers of latent senses used in the model. For models that do not use

multiple senses (the unigram, ACTonly and bigram models), Figure 2 shows two vertical bands

which represent the upper and lower limits of the 95% bootstrapped confidence intervals. For both

the noACT and full models, we run iterations with 1, 2, 3, 5 and 7 latent senses and present

confidence intervals for models evaluated at each.

Figure 2 shows that the worst performing model was the unigram model. As this is the simplest

possible approach to behavior prediction, this is not surprising. However, the poor performance

of the unigram model relative to the others is important in that gives us confidence that the

prediction problem is non-trivial. The ACTonly model, which implements the basic ACT model,

improves our ability to predict behavior by almost an order of magnitude over the baseline unigram
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approach. Similarly, the the full model performs significantly better than the noACT model when

the number of latent senses is low.

More specifically, we see that affective information encoded in the ACT model improves per-

plexity by 16% with only one latent sense and by 3% when the number of latent senses per entity is

assumed to be two. These gains, while modest are statistically significant - 95% CIs do not overlap

at all in either case. However, Figure 2 also shows that as the number of latent senses increases,

the difference in predictive power between these two models begins to decrease. Specifically, as

the number of assumed senses extends beyond three, model performance on the prediction task

becomes virtually indistinguishable. This shows that as the number of latent senses increases, the

GMM portion of both the noACT and full models is able to find parameter values that can

reliably inform us of future events.

We therefore see that when the number of parameters in the model is low, the theory of ACT

provides important guidance for how any assumed affective meaning is structured. As the number

of free parameters in the model grows, however, the need for a theoretically driven model of affect

decreases in order to accurately predict the data - the model is able to fit the data well in either

case because it has enough parameters to “make up” for the lack of theoretically driven priors.

Predictive accuracy in this case, however, is still sacrificed for the use of the resulting parameters.

As noted in the sections above, only results for the full model are useful in interpreting EPA

profiles of entities, as only the full model allows us to begin from a baseline of intuitive EPA values

for at least a subset of the data. In other words, while the noACT model assumes the existence

of affective constraints, it is essentially free to “make up” its own cultural norms about the form

of those constraints. Only in the full model, where affective constraints have been painstakingly

estimated via decades of survey data, are the affective constraints estimated by the model likely to

match our culturally-normed intuitions.

Finally, Figure 2 shows that neither the full nor the noACT models perform as well as the

bigram model. This indicates that the ACT-GMM portion of the model actually decreases the

predictive performance of the bigram language model on the training data. This stems from two

factors. First, as mentioned above, semantic information from the bigram model retains a large

amount of the affective meanings which may drive these semantic connections. Again, though, it

is only with the full model that we are able to better understand these affective relationships.

Second, because the bigram model is a probability model over only information in the training

data, it does not need to “consider” information from the ACT dictionary, information which does

not always confirm that provided in the dataset of social events.

Regardless of this difference in the function that these two models maximize, predictive ability

on the testing data is the best tool available to understand how well parameter estimates represent

the social event data. To better understand how the ACT-GMM portion of the model affects

predictions from the language model, Figure 3a plots the likelihood given to the correct behavior

for each test point across the nine folds. Each point on the graph represents a single test point.

The y-value of a point represents the probability of the actual behavior in the event as evaluated

by the best full model (where L = 5). The x-value provides the same probability, except from
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(a) (b)

Figure 3: a) Comparison of the predictions for the best full model and the bigram model for all test points

- a dashed line is drawn where x=y for clarity; b) Comparison of average perplexity of the full and bigram

models for different likelihood cutoffs

the bigram model. Points that fall above the grey diagonal line are those in which the full model

assigned a higher probability to the actual behavior for the test point, while points below the line

represent those where the bigram model outperformed the full model.

Figure 3a is constructed with alpha blending, so darker areas of the plot represent areas where

more test points fell. Most test points fall near the two tails of the likelihood- that is, either both

models believed the test point to be highly unlikely or highly likely. As we see, the bigram model

performed significantly better at the lower tail. Thus, the bigram model put more weight in the

posterior predictive distribution on the correct behavior in cases where both models believed the

true behavior to be highly unlikely. In contrast, the full model performs much better on test points

that both models believed were more likely than chance (any value of less than approximately .011

represents a point for which both models would do worse than a random guess). Consequently, we

can have some confidence

Figure 3b emphasizes this point. On the y-axis, average perplexity is given for the best full

model (solid line) and the bigram model (dashed line). On the x-axis, we provide a cutoff value for

test points. As the cutoff increases, we remove test events where both models put less probability on

the correct behavior than the cutoff value. Thus, for a cutoff of .02, we remove all test events where

both models put less than 2% of the weight in their respective posterior predictive distributions on

the correct behavior. Figure 3b shows that full model performance is slightly better than the simple

bigram model on data points for which both models believe the actual behavior to be relatively

likely.

Combined, Figure 3a and Figure 3b suggest that information from the ACT-GMM portion of
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the full model aids the language model portion in predicting already likely behaviors, and detracts

in cases where the behavior is already unlikely. This suggests that the model that we have developed

struggles when given noisier data. It also suggests, however, that the affective meaning the model

uses for prediction may provide important information in a predictive sense beyond what one can

derive from pure semantics. This observation shows that a better pipeline of event extraction and

future iterations of the model may be provide an important new avenue of predictive modeling of

text as well.

As stated, however, the goal of the present work is not to predict behavior, but rather to infer

affective meaning. Results in this section were therefore intended to show that the full model

learns parameter estimates indicative of the data as proven by the model’s ability to predict events

it has not seen. To this end, we observe that the full model performs significantly better than

all baselines except the bigram language model. We noted one reason for the model’s inability

to eclipse performance of the bigram model alone, and followed with results suggesting that the

full model does better at appropriating higher likelihoods to test points that the language model

component indicates are already somewhat likely.

Further, with respect to absolute metrics, the full model (and by extension, the bigram model)

are highly accurate in their predictions. Across all test points, the median probability ranking of

the correct behavior in the posterior predictive distribution for the best full model was third, and

the correct behavior was in the top ten (out of 87) behaviors in 76.9% of the test events. Combined,

all of these indicators give us confidence that our model is able to provide parameter estimates for

EPA profiles that represent actual processes inherent in the data.

7.2 Perceptions during the Arab Spring

7.2.1 Behaviors

We now turn to a cautious interpretation of model results. Our focus is on parameters that give

insights into how the English speaking news media portrayed the entities in our dataset during the

Arab Spring. All results in this section are from parameter estimates of the full model run with

three latent senses on the entire dataset. While the model performed slightly better with five latent

senses we chose to use the model with three latent senses for parsimony. Qualitative conclusions

are similar for both models.

Figure 4 displays 95% confidence intervals, as determined using µ0 and σ20, for the EPA profiles

for all behaviors not already in the existing ACT dictionaries. Behaviors are ordered from left to

right by their mean evaluative score, as this dimension tends to be the easiest to conceptualize.

Importantly, results are shown only for latent senses having more than 10 samples, as including data

from latent senses with fewer than this number made the plot difficult to read and also displayed

data that was heavily influenced by random initial values of m0 and s0.

Figure 4 shows that the model inferred a single, dominant latent sense for all behaviors - only

a single latent sense had more than 10 samples for each of the behaviors listed. Thus, the model

believed that across all cultural domains incorporated in the news data, the behaviors of interest
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Figure 4: EPA Profiles for all behaviors used by the model that were not already in the ACT dictionaries.

Confidence intervals are 95% intervals based on σ2
0 . A horizontal grey line is drawn at y=0 to delineate

positive from negative values

had a relatively stable meaning. There are multiple reasons why this could be the case. From a

mathematical perspective, GMMs operate to a certain extent on a “rich-get-richer” phenomena in

that large clusters tend to attract more points. This may have an impact on the extent to which all

behaviors clustered along one latent sense. However, as there are many identities that the model

estimated to have multiple latent senses, it is plausible that other reasons exist for this observation.

One possible reason is that behaviors simply have relatively stable and universal meanings across

cultures. This finding may help to ground ACT analyses across cultures in the future.

Given the stability of the affective meanings of behaviors, we would expect that the EPA profiles

of these terms fit our intuitive sentiments. We observe this to generally be the case, particularly for

extreme values. The most positive behaviors in terms of mean evaluative score, “give”, “ask” and

“raise”, intuitively seem to be things that a good identity would engage in towards another good

identity. In contrast, “infiltrating”, “targeting” and “assassinating” are indicative of behaviors that

have a bad connotation. Similarly, behaviors at the higher end of the potency spectrum, “give”,

“ask” and “kidnap”, are behaviors that more powerful identities could engage in towards lesser

individuals, and the least powerful behaviors, “lose” and “see”, are relatively powerless. Finally,

while all behaviors reported by the media and captured by the model are, unsurprisingly, reasonably

active, “love”, “ask” and “kidnap” can be considered to be three of the more active ones.

Though any analysis of such results is almost by definition subjective, the model’s views on

behaviors at the ends of the EPA spectrums fit with at least our own intuitions. When considering
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the “middle” of these distributions, however, two findings are also of interest. First, most behaviors

are given more neutral values than what we expected. In comparison to data in the ACT dictionary

used in the present work, the values are indeed slightly more neutral. For example, the 95%

bootstrapped confidence interval around the Evaluative dimensions of the behaviors in Figure 4 is

[-0.21,0.08] (mean -.05), a distribution which puts slightly more of its probability weight near zero

than a similar band placed around all behaviors in the ACT dictionary [-0.01, 0.25], (mean .12).

The cause of this is not immediately clear, and we return to this in the following section.

Second, we observe that there do exist behaviors for which results do not fit our intuitions.

For example, kidnapping is actually a slightly positive behavior. While we cannot rule out other

factors, the explanation for this seems to reside in what was considered newsworthy behavior during

the Arab Spring. Although there are several instances of bad identities kidnapping good identities

(e.g. “gunman kidnap woman”), the majority of the social events that involve kidnapping in our

dataset are ones in which a good (or ambiguous) identity kidnaps another good identity (“father

kidnap mother”, “police kidnap child”). These events are newsworthy precisely because they are

unexpected (we would not generally expect fathers to kidnap mothers). Given information that

good identities kidnap other good identities, however, the model is led to believe that the dominant

sense of kidnapping is one of slightly positive evaluative sense.

This observation does not detract from the utility of the proposed approach - although this

meaning for kidnap is unexpected, it is supported by this dataset. Future work will need to

consider how to remedy, theoretically or methodologically, these differences between what is news-

worthy and what is not. For example, one methodological remedy would be to modify assumptions

about deflection. As newspaper articles likely include both culturally consistent information and

more surprising, high-deflection events events, a bimodal distribution for deflection may be a more

appropriate.

The fact that the model can estimate deviations around mean values for EPA profiles helps us

to understand the extent to which the model is certain of its estimates. In the case of kidnapping,

and many other behaviors in Figure 4, we see that the model is relatively uncertain of, for example,

the “goodness” or “badness” of the behavior. Thus, for ambiguous cases (like kidnapping), the

model responds with large deviations. The increase in this deviation may unfortunately lead to the

masking of the existence multiple latent senses in the data, as these two sources of variation are

in direct conflict during model inference. Future work will consider how best to account for this.

However, current inference of both at least allows us to better understand how certain we can be

of the different parameter estimates while still retaining the necessary theoretical components of

ACT.

7.2.2 Identities

On some level, our analysis of the behaviors used by the news media was another exercise in

model validation, as we observed that parameter estimates simply matched, for the most part, our

intuitions. We now turn to an analysis of a small portion of the identities of interest to us and how
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Figure 5: EPA Profiles for six identities of interest. Confidence intervals are 95% intervals based on σ2
0 . A

horizontal grey line is drawn at y=0 to delineate positive from negative values

they were perceived by major English speaking news media outlets. As a detailed analysis of all 102

identities in our dataset is not feasible, we choose to focus on one of particular interest, specifically

those relating to religious groups11. Figure 5 displays results for these six identities in the same

fashion as Figure 4. Note that several of the identities were used in multiple latent senses more

than ten times. Thus, certain identities have more than one EPA profile associated with them.

The identities portrayed in Figure 5 represent the three major religious groups in the Middle East

(Judaism, Christianity and Islam) as well as the identities “Islamist”, “Sunni” and “Extremist”.

Unfortunately, we did not have enough data to compare perceptions of Sunni Muslims to Shiite

Muslims. We hope to determine some way of doing so in the future. The figure shows that the

media outlets found in our dataset collectively had a relatively neutral perception of the evaluative

nature of the generic Muslim identity. Muslims were considered to be almost exactly neutral, with

a mean evaluative score of -.02. Being neutral and reliably powerless [-0.96, 0.10], the Muslim

identity in general was thus portrayed as more the victim than the perpetrator by the English

speaking news media. This identity was even more neutral than Jewish and Christian identities.

In fact, Figure 5 shows that Jews and Christians were frequently viewed as being slightly “bad”.

This result alone suggests that the news media did not focus on the religious aspects of the

Arab Spring at the level of global religious identities. However, Figure 5 suggests that, far from

identifying all Muslims as a neutral identity, the news media instead used more specific Muslim

identities to connote a strongly negative view of the Muslim identity during the Arab Spring.

The identities of Islamists, Muslims who believe politics should be driven by Islamic principles

11Results for all identities can be found online, at https://www.dropbox.com/s/oas8rvlzgw4o6dj/all identities

.png?dl=0
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(Cammett & Luong, 2014), and Sunnis, the majority sect of Islam in the Arab world, are almost

entirely negative and active. In all but one sense in which the Islamist identity is portrayed, these

identities are viewed as being powerful as well. Even compared to the generic “extremist” identity,

the Sunni and Islamist identities were strongly vilified.

It is relatively well-known that Islamist actors took advantage of the Arab Spring revolutions to

gain power (Bradley, 2012), and that their ideological stance on government conflict with Western

ideals of the separation of church and state. However, the vilification of the Sunni identity as

opposed to the more generic Muslim identity is somewhat vexing, particularly in its extent.

8 Conclusion

In the present work, we introduced a new methodology that can extract social events from text

and then use these social events to extract sentiment profiles for identities and behaviors. The chief

contribution is a statistical model that, by using the concepts of Affect Control Theory (Heise,

2007), provides insight into the soft, affective constraints that influence how we perceive and enact

social events. This represents one of the first attempts to ground the analysis of sentiment in

text towards generalized identities and behaviors in a way that uses the rigorous theoretical ideals

put forth by ACT. From an NLP standpoint, our approach is one of the first efforts to extract

a multi-dimensional sentiment profile for concepts; moving beyond the traditional approach of

evaluation along a single, evaluative dimension. Further, our work allows for the extraction of

multiple sentiment profiles for the same concept within a single corpora.

After describing our model, we provided a case study of its use on how the news media per-

ceived and portrayed identities and behaviors of interest during the Arab Spring. Two findings

were of interest. First, while the model found several cross-cultural differences in sentiments of

identities, sentimental meanings of behaviors were universal across data from a large number of

English-speaking news outlets across the world. While more work is need to better understand this

finding, the possibility of stable meanings of behaviors across cultures would be of significant use

in anchoring studies of cross-cultural and inter-group identity meanings.

The second finding of interest from our case study was that more specific, connotative Muslim

identities of Sunni and Islamists were vilified by major English speaking news outlets, whereas the

generic Muslim identity was considered to be rather neutral, even in comparison to the Jewish

and Christian identities. A complete understanding of these perceptions requires a detailed con-

sideration of both the events that actually occurred on the ground as well as an understanding of

how particular events were perceived by the news media. In addition to those mentioned above,

other well-known factors can be expected to have played a role in this finding. These including

but are not limited the perpetual Sunni-Shiite conflict, the majority position of Sunnis in the Arab

world and their resulting role in the revolutions. However, a comprehensive analysis of the relative

influence of each of these factors, and how the Western media was influenced by them, is beyond

the scope of the present work.

In taking a step beyond present methodological boundaries in a variety of fields, we made a

33



host of decisions that had implications on our results. This was particularly true of our approach

to event extraction. Three limitations should be noted in our current approach to extracting social

events from text. First, we do not currently use the full subject or object, deciding to only use

the single dependent term of a possibly multi-term entity (e.g. we only use “America”, where the

full subject might be “United States of America”). Similarly, we also ignore both settings and

modifiers, and thus may lose significant semantic meaning. We assume these errors to be random

at this point, and therefore that they “wash away” during model estimation. Second, in ignoring

social events which do not have any existing ACT terms, we are removing a large set of potentially

useful social events from our data. Future work is needed to better extract social events. Finally,

we ignore the order of events in a document and over time. Accounting for temporal sequences

might allow for a more accurate predictive model that does not rely on the assumption that all

social events extracted begin with the same transient meanings.

Aside from social event extraction, limitations also exist in our statistical model, including the

heuristic way in which model parameters are initialized and its relatively poor performance on

unlikely events. As we observed in our results, the model also seems to be slightly biased towards

neutral sentiments, something we are currently working to understand. Combined, these limitations

suggest that, as used here, the current iteration of the model is useful as a descriptive tool, providing

insight from large amounts of data that can then be used for more focused, specialized studies. This

use of the model is therefore similar to how current NLP tools, such as LDA (Blei et al., 2003), are

used in the sociological literature, and we hope that our model provides another methodology for

interpreting information from widely available textual data sources.

In the future, we intend to improve model performance in several ways. First, we can use

slice sampling on hyperparameters (Neal, 2003) and assume a Dirichlet Process (Teh, 2010) on the

number of latent senses per entity to better formalize the notion that the number of latent senses

for each entity is unknown and thus should be estimated from the data. Similarly, we could extend

the mixture model to use other covariates in the data (such as the particular newspaper from which

a social event was extracted), similar to the recent efforts of Roberts, Stewart, and Airoldi (2013).

This work will aid in understanding the origin of different perceptions. As our model is agnostic to

the source of social event extraction, we also hope to extend our efforts to consider different media

beyond newspaper data.

The model could also be improved by a stronger relationship between the language model, which

extracts semantic relationships, and the mixture model, which extracts affective relationships. We

are currently exploring how the relationships between semantic “constraints” (Heise & MacKinnon,

2010) and affective “signals” can be formalized via cognitive modeling, an approach which may

provide novelty in both the theoretical and methodological domains. Finally, we note that the

ability to extract affect and relate it to behaviors is also an important extension to network text

analysis (Carley, 1994). Future work could extend our model to this domain, perhaps utilizing ideas

from relational event modeling (Butts, 2008), to extract more meaningful, valanced links between

actors and between actors and objects and thereby expand the use of news data for network

analytics.
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The present work tackles a methodological question at the intersection of a variety of domains.

Perhaps most importantly, we extend methodology surrounding Affect Control Theory to allow for

the automated extraction of EPA profiles of entities from text. Given the vast expense of surveys

in obtaining this information, the efforts described here, as well as those that build off them in

the future, will lead to a stronger and more cost-efficient means of understanding how individuals

perceive the actions and identities of others and how such affective constraints affect the way we

think about and act towards others. Our work also provides researchers with the opportunity to

perform historical analyses where, of course, surveys are not available. To this end, we intend to

continue the public development of both code and documentation in a way that allows others to

extend our work and use it without a strong programming background. The version of the code

used for the present work is available at https://github.com/kennyjoseph/act paper public.
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Kübler, S., McDonald, R., & Nivre, J. (2009). Dependency parsing. Synthesis Lectures on Human

Language Technologies, 1 (1), 1–127.

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th

annual international conference on machine learning (pp. 609–616). ACM.

Leetaru, K., & Schrodt, P. A. (2013). Gdelt: Global data on events, location, and tone, 1979–2012.

In of: Paper presented at the isa annual convention (Vol. 2, p. 4).

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. (2014). The

stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting

of the association for computational linguistics: System demonstrations (pp. 55–60).

Mikolov, T., Yih, W.-t., & Zweig, G. (2013). Linguistic regularities in continuous space word

representations. In HLT-NAACL (pp. 746–751). Citeseer.

Neal, R. M. (2003). Slice sampling. Annals of statistics, 705–741.

O’Connor, B., Stewart, B. M., & Smith, N. A. (2013). Learning to extract international relations

from political context. In ACL (1) (pp. 1094–1104).

Osgood, C. E. (1975). Cross-cultural universals of affective meaning. University of Illinois Press.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and trends in

36



information retrieval , 2 (1-2), 1–135.

Rajaraman, A., & Ullman, J. D. (2011). Mining of massive datasets. Cambridge University Press.

Roberts, M. E., Stewart, B. M., & Airoldi, E. M. (2013). Structural topic models (Tech. Rep.).

Working paper.

Robinson, D. T., Smith-Lovin, L., & Wisecup, A. K. (2006). Affect control theory. Springer.

Smith-Lovin, L. (1987). Impressions from events. Journal of Mathematical Sociology , 13 (1-2),

35–70.

Smith-Lovin, L., & Douglas, W. (1992). An affect control analysis of two religious subcultures.

Social perspectives on emotion, 1 , 217–47.

Soon, W. M., Ng, H. T., & Lim, D. C. Y. (2001). A machine learning approach to coreference

resolution of noun phrases. Computational linguistics, 27 (4), 521–544.

Tajfel, H., & Turner, J. C. (1979). An integrative theory of intergroup conflict. In The social

psychology of intergroup relations (W Austin & S. Worche ed., pp. 33–47). Monterey, CA:

Brooks/Cole.

Teh, Y. W. (2010). Dirichlet process. In Encyclopedia of machine learning (pp. 280–287). Springer.

Thomas, L., & Heise, D. R. (1995). Mining Error Variance and hitting pay-dirt: Discovering

systematic variation in social sentiments. The Sociological Quarterly , 36 (2), 425–439.

Tregouet, D. A., Escolano, S., Tiret, L., Mallet, A., & Golmard, J. L. (2004). A new algorithm

for haplotype-based association analysis: the stochastic-EM algorithm. Annals of human

genetics, 68 (2), 165–177.

Wallach, H., Mimno, D., & McCallum, A. (2009). Rethinking LDA: Why priors matter. Advances

in Neural Information Processing Systems, 22 , 1973–1981.

Zhai, C., & Lafferty, J. (2001). A study of smoothing methods for language models applied to

ad hoc information retrieval. In Proceedings of the 24th annual international ACM SIGIR

conference on research and development in information retrieval (pp. 334–342). ACM.

Zhu, M., Zhang, Y., Chen, W., Zhang, M., & Zhu, J. (2013). Fast and accurate shift-reduce

constituent parsing. In ACL (1) (pp. 434–443).

37


